高機能化が進むエポキシ樹脂の最新動向

2020年7月発行

定価104,500円(消費税込み)

住ベリサーチの調査研究レポート

住ベリサーチ株式会社 技術調査部 〒140-0002 品川区東品川2-5-8 天王洲パークサイドビル16F TEL 03-5462-7036 FAX 03-5462-7040 目

緒言	1
第1章 市場動向	2
1. 1 主要業界の動向	2
1. 1. 1 自動車	2
1. 1. 2 パソコン・・・・・	4
1. 1. 3 スマートフォン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
1. 1. 4 薄型テレビ・・・・・	6
1. 1. 5 航空機産業	7
1. 2 部品・部材の市場動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
1. 2. 1 半導体	7
1. 2. 2 プリント配線板・・・・・	9
1. 2. 3 接着剤	10
1. 2. 4 塗料	12
1. 3 半導体の動向・・・・・	13
1. 3. 1 ムーアの法則と半導体の微細化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
1. 3. 2 車載半導体	14
1. 3. 3 パワー半導体	16
第2章 エポキシ樹脂の主な研究開発動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
 1 高機能化が進むエポキシ樹脂の市場動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
2. 2 エポキシ樹脂の基本・・・・・	21
2. 2. 1 エポキシ樹脂の主な種類と構造・・・・・・・・・・・・・・・・・・・・・・	21
2.2.2 化学構造と特性の関係	24
1 ビフェニル型エポキシ樹脂・・・・・・・・・・・・・・・・・・・・・・・	24
2 ノボラック型エポキシ樹脂・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	25
 3 多官能芳香族型エポキシ樹脂・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	26
4 ジシクロペンタジエン型エポキシ樹脂・・・・・・・・・・・・	28
5 フェノールアラルキル型エポキシ樹脂・・・・・・・・・・・・・・・・	28
6 メソゲン基を骨格とするエポキシ樹脂・・・・・・・・・・・・・・・・	29
7 トリスフェノールメタン型エポキシ樹脂・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	29

2. 3	I	ポキ	シ構造の研究開発動向・・・・・	30
2.	3.	1	メソゲン骨格エポキシ樹脂・・・・・	30
		1	構造と高機能化の研究・・・・・	30
		2	高熱伝導化の研究・・・・・	35
2.	3.	2	ターフェニル構造を有する多官能エポキシ樹脂・・・・・・・・・・・	39
2.	3.	3	フルオレン骨格エポキシ樹脂・・・・・	41
2.	3.	4	多環式エポキシ樹脂・・・・・	42
2.	3.	5	トリアジン骨格エポキシ樹脂・・・・・	44
2.	3.	6	アダマンチル基を含むエポキシ樹脂・・・・・・・・・・・・・・・・・・	45
2.4	変	性エ	-ポキシ樹脂・・・・・	46
2.	4.	1	ウレタン変性・・・・・	46
2.	4.	2	ゴム変性・・・・・	48
2.	4.	3	ポリロタキサン変性・・・・・	51
2.	4.	4	マレイミド変性・・・・・	51
2.	4.	5	シロキサン変性・・・・・	53
2.	4.	6	シラン変性・・・・・	54
2.	4.	7	ポリサルファイド変性・・・・・	54
2.	4.	8	アクリル変性・・・・・	55
2.	4.	9	イソシアネート変性・・・・・	56
2.	4.	10	ポリベンジル変性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	56
2.	4.	11	ビニル変性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	57
2.	4.	12	キレート変性 ・・・・・	58
2.	4.	13	脂肪族変性 · · · · · · · · · · · · · · · · · · ·	58
2.	4.	14	低極性基による変性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	58
2.	4.	15	シリコーン変性 ・・・・・	59
			アミン変性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	60
2.	4.	17	ダイマー酸変性 ・・・・・	60
2.	4.	18	ロジン変性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61
2.	4.	19	ひまし油変性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61
塗っ幸	19	د. حد ۱	提明で立機化化工作用な動力	60
			樹脂の高機能化研究開発動向 · · · · · · · · · · · · · · · · · · ·	63 63
			クレイナノ粒子による絶縁材料	65
			ナノシリカによるコンポジット・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	66
			マグネシウム酸化物による検討・・・・・・・・・・・・・・・・・	68
			窒化ホウ素コンポジット・・・・・	08 70
у.	т.	т		10

3.	1.	5	ケイ素化合物とのハイブリッド化・・・・・・・・・・・・・・・・・・・・・・	72
		1	カゴ型シルセスキオキサンによる改質・・・・・・・・・・・・・・・	72
		2	in-situ 型シリカハイブリッド ・・・・・・・・・・・・・・・・・・・・・・・・・	74
		3	ダブルデッカー型骨格・・・・・	75
		4	ランダム型シルセスキオキサンによるハイブリッド・・・・・・	77
		5	イミド基シルセスキオキサンによるハイブリッド・・・・・	78
		6	オルガノシリカゾルハイブリッド材料・・・・・・・・・・・・・・・	79
		7	ZnO(酸化亜鉛)ナノ粒子分散シルセスキオキサン型エポキシ樹脂	81
3.	1.	6	遷移金属酸化物とのハイブリッド化による屈折率の制御・・・・・・	82
		1	チタニアとのハイブリッド化・・・・・	82
		2	ジルコニアナノ粒子による高屈折率化・・・・・・・・・・・・・・・・・	84
		3	ジルコニアナノ分散液・・・・・	86
3. 2	2 7	ポリー	マーアロイによる高機能化・・・・・	87
	2.		アクリル共重合体・・・・・	87
3.	2.	2	PES アロイコンポジット ・・・・・	89
3.	2.	3	フィラー添加アロイコンポジット・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	91
3. 3	3 而	讨熱	生の向上・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	91
3.	3.		耐熱化の手法・・・・・・	91
3.	3.	2	Tg レスを示す多官能メソゲン骨格エポキシ樹脂・・・・・	93
3.	3.	3	。 多官能型・多環芳香族型エポキシ樹脂・・・・・・・・・・・・・・・・	95
		1	多官能型エポキシ樹脂・・・・・	95
		2	多環芳香族型エポキシ樹脂・・・・・	98
		3	ナフチレンエーテルオリゴマー型エポキシ樹脂・・・・・	100
		4	ポリシロキサン前駆体含有芳香族エポキシ樹脂・・・・・・	103
		5	ベンゼン環・ナフタレン環の新規エポキシ樹脂・・・・・・	104
3.	3.	4	トリアジン骨格エポキシ樹脂/マレイミド樹脂・・・・・	105
3.	3.	5	シアネート樹脂含有エポキシ樹脂・・・・・・・・・・・・・・・・・	107
3.	3.	6	ベンゾオキサジン/エポキシ組成・・・・・	108
3.	3.	7	ε-カプロラクタムとの架橋硬化・・・・・	110
3.	3.	8	グリコールウリル誘導体・・・・・	111
3.	3.	9	エポキシドと硬化剤の配合・・・・・	112
3.4	[] 「「」	高熱伯	云導化 ••••••	112
	4.		液晶性エポキシ樹脂による高熱伝導化・・・・・・・・・・・・・・	113
			フィラーコンポジットによる高熱伝導化・・・・・・・・・・・・・	116
		1	各種フィラーの熱伝導性・・・・・	116

	2	アルミナによる高熱伝導化・・・・・	118
	3	窒化アルミニウムフィラーの開発と応用・・・・・・・・・・・・・・・	120
	4	窒化ホウ素によるコンポジット・・・・・・・・・・・・・・・・・・・・・・・・・・・・	123
	5	窒化ケイ素ナノワイヤハイブリッド材料	129
	6	グラフェンによるコンポジット・・・・・・・・・・・・・・・・・・・・・・	130
	7	有機修飾フィラーによるハイブリッド材料	132
3.4.	3	シアネート硬化エポキシ/フィラー高充填・・・・・・・・・・・・	132
3.4.	4	高熱伝導性放熱シートの開発・・・・・	133
3.5 克	歯靭イ	۲	136
3. 5.			136
3.5.	2	in-situ 重合による強靭化 · · · · · · · · · · · · · · · · · · ·	139
3.5.		エポキシ化ポリオールとのコンポジット化・・・・・	144
3.5.	4	分子量分布と破壊靭性値の関係・・・・・	144
3.5.	5	ゴム微粒子分散エポキシ樹脂・・・・・	146
	⊀ =∓ <i>⊨</i>	₽// <i>,</i>	1.40
			148
3. 6.		エポキシ骨格と誘電特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	149
3. 6.		ポリアリレート樹脂による低誘電化・・・・・・・・・・・・・・	150
3. 6.		メソポーラスシリカ粒子による低誘電化・・・・・・・・・・・・・・・	153
3. 6.		PPE による低誘電化 · · · · · · · · · · · · · · · · · · ·	155
3. 6.		活性エステル硬化剤・・・・・	157
3. 6.		低誘電率反応性希釈剤·····	158
3. 6.	7	低誘電エポキシ樹脂・・・・・	159
3.7 冀	離燃化	と ••••••••••••••••••••••••••••••••••••	159
3.7.	1	難燃性エポキシ樹脂の開発・・・・・	159
	1	自己消火性エポキシ樹脂・・・・・	159
	2	リン変性エポキシ樹脂・・・・・	163
	3	キサンテン型エポキシ樹脂・・・・・	164
3.7.	2	難燃剤の種類と特徴・・・・・	164
3.7.	3	難燃剤メーカーと主なグレード・・・・・・・・・・・・・・・・・・・・・・	167
3.7.	4	ハロゲンフリー難燃剤の研究・・・・・	170
	1	リン系難燃剤の研究開発動向・・・・・・・・・・・・・・・・・・・・・・・・	170
	2	リン酸アミドエステルの合成と応用・・・・・・・・・・・・・・・・・	172
	3	リン酸エステル系難燃剤の硬化障害の解明・・・・・・・・・・・・・・	173
3.8	亲着他	生の改良・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	174
~. ~ 13			- • 1

3.	8.	1	エポキシ樹脂の骨格と接着性・・・・・	174
3.	8.	2	エポキシ樹脂の接着理論・解析・・・・・・・・・・・・・・・・・・・・・・	176
		1	エポキシ樹脂界面の接着に関する分子論的研究・・・・・・・・・・・	176
		2	接着界面の水分子の役割に関する研究・・・・・・・・・・・・・・・・・	177
		3	分子シミュレーションによる密着性の解析・・・・・・・・・・・・・・	178
3.	8.	3	イオウ原子の導入・・・・・	179
		1	イオウを含むエポキシ樹脂や硬化剤・・・・・・・・・・・・・・・・・	179
		2	ジスルフィド結合化合物の添加・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	180
3.	8.	4	トリアジン化合物による密着性の向上・・・・・・・・・・・・・・・・・・・	181
3.	8.	5	グリコールウリル化合物による密着性付与剤・・・・・・・・・・・・	183
3.	8.	6	半導体リードフレームとの接着解析・・・・・・・・・・・・・・・・・・・・・・	184
3. 9) \$	主動性	生の向上・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	185
	9.			185
3.			ポリオキシアルキレン骨格・・・・・	186
3.	9.	3	ポリブタジエン骨格・・・・・	186
3.	9.	4	脂肪族骨格	187
3.	9.	5	ポリサルファイド変性・・・・・	188
3.	9.	6	伸縮性エポキシフィルムの開発・・・・・	189
3.	9.	7	可撓性シランカップリング剤・・・・・	190
3.1	0 任	€恆₹	素化エポキシ樹脂の研究開発 ・・・・・	191
-	10.		- 過酸化水素酸化によるエポキシ樹脂の開発·····	191
0.	10.	1	塩素フリーグリシジルエーテルの合成・・・・・	192
		2	松やに成分からテルペンオキシドの合成・・・・・・	194
3.	10.		ポリ酸触媒/アパタイト粉体反応システム・・・・・・・・・	195
			低塩素エポキシ樹脂の開発グレード・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	196
第4章	特徴	なる	るエポキシ樹脂・・・・・・	197
4.1	L 脂	f環 I	式エポキシ樹脂の技術動向・・・・・	197
4.	1.	1	特徴とダイセルの開発動向・・・・・	197
4.	1.	2	強靭化の検討・・・・・	199
		1	ポリビニルホルマール樹脂による強靭化・・・・・・・・・・・・・・・	199
		2	マレイミド/スチレン共重合体との in-situ 重合 ・・・・・・・・・・	201
4.	1.	3	耐熱性、耐候性の改良・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	202
4.	1.	4	スルホニウム塩による硬化・・・・・	203
4.	1.	5	高耐熱・低粘度脂環式エポキシ化合物の開発・・・・・・・・・・・	204

	4.	1.	6	水素添加型エポキシ樹脂・・・・・	205
	4.2	素	如可	塑性エポキシ樹脂·····	206
	4.	2.	1	重合機構とその特性・・・・・	206
	4.	2.	2	CFRTP の特性解析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	209
			1	衝撃特性の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	209
			2	分子量の違いによる界面せん断強度・・・・・・・・・・・・・・・・・	210
			3	高分子量化と疲労寿命の向上・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	211
	4.	2.	3	熱可塑性エポキシ樹脂による実用化・・・・・・・・・・・・・・・・	212
			1	射出成形技術による自動車部品の開発・・・・・・・・・・・・・・・・	212
			2	FRP ロッドへの適用 ・・・・・	212
	4. 3	15 括	劉水僧	生エポキシ樹脂・・・・・	213
	4.	3.	1	研究開発動向	213
	4.	3.	2	製品への適用化検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	216
答	育5章			5の研究動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	217
	5.1	. >	バイス	オマスエポキシ樹脂の研究・・・・・	217
	5.	1.	1	地球温暖化対策と開発プロジェクト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	217
			1	地球温暖化とバイオマスの動向・・・・・・・・・・・・・・・・・・・・・・	217
			2	日本の開発プロジェクト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	219
	5.	1.	2	リグニンを利用したエポキシ樹脂・・・・・・・・・・・・・・・・・・・・・・	219
			1	リグニンエポキシ樹脂の合成研究・・・・・・・・・・・・・・・・・・・・・・	219
			2	硬化剤や添加剤としての適用検討・・・・・・・・・・・・・・・・・・・・・・	221
			3	スギのリグニンによる GFRP の開発 ・・・・・・・・・・・・・・・・・・・・・・	227
			4	ソーダAQ蒸解によるリグニンを使用したエポキシ樹脂の開発・・・・	229
	5.	1.	3		230
	5.	1.	4	そのほかのバイオマスエポキシ・・・・・・・・・・・・・・・・・・・・・・・・・・・	230
			1	タンニンを硬化剤とするエポキシ樹脂・・・・・・・・・・・・・・・・	230
			2	クルクミンを導入原料とするエポキシ樹脂・・・・・・・・・・・・	231
			3	エポキシ化亜麻仁油樹脂・・・・・	232
			4	エポキシを架橋剤とする大豆タンパク質接着剤・・・・・・・・・・・	233
			5	カシューナッツ殻を原料とするエポキシ樹脂・・・・・	233
	5.2	」	く性コ	ェポキシ樹脂・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	233
	5.	2.	1	VOC 対応の動向 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	233
	5.	2.	2	水性エポキシ樹脂の技術開発動向・・・・・・・・・・・・・・・・・・・・・・	235
			1	水溶性エポキシ化合物・・・・・	235

	2	水系変性エポキシ樹脂・・・・・	236
	3	防食塗料用水性エポキシ樹脂・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	237
5.3角	军体性	生・リワーク型エポキシ樹脂・・・・・	237
5.3.	1	技術開発動向	237
	1	ジスルフィド結合の分解・・・・・	238
	2	アセタール結合、ケタール結合の加水分解・・・・・・・・・・・・・	238
	3	カルボン酸エステル結合の熱分解・・・・・・・・・・・・・・・・・・・・・・	238
	4	熱膨張性マイクロカプセル配合解体性エポキシ樹脂系接着剤・・・・・	238
	5	膨張黒鉛の添加による解体性エポキシ・・・・・・・・・・・・・・・	238
5.3.	2	アセタール結合含有エポキシ樹脂・・・・・・・・・・・・・・・・・・・・・・	239
5.3.	3	酸化分解性エポキシ樹脂・・・・・	241
5. 3.	4	解体性接着剤の開発・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	241
5.4 J	リサノ	イクル技術の動向・・・・・・	243
5.4.	1	エポキシ樹脂リサイクル技術の手法・・・・・・・・・・・・・・・・・	243
5.4.	2	CFRP のリサイクル技術・・・・・	244
	1	技術開発動向 •••••••	244
	2	二段階熱分解法	245
	3	電気酸化分解法	246
	4	常圧溶解法	247
	5	亜臨界・超臨界流体法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	247
	6	ソルボサーマル法・・・・・	249
5.4.	3	プリント基板などの樹脂可溶化の研究・・・・・・・・・・・・・・・	249
5.4.	4	硝酸分解によるリサイクル・・・・・	251
5.4.	5	半導体の熱活性によるリサイクル・・・・・・・・・・・・・・・・・・・・・・	253
5.4.	6	マイクロ波加熱分解・・・・・	254
5.4.	7	地上コイル用モールド樹脂のリサイクル・・・・・・・・・・・・・・・	255
5.5 但	【毒	生エポキシ樹脂の研究・・・・・	256
第6章エオ	ペキシ	ン樹脂硬化反応の研究動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	257
		剤の種類と特徴・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	257
6.2 R	え応核	幾構、特性改良の研究・・・・・	258
		エポキシ樹脂の反応機構・・・・・	258
		新たな硬化挙動の研究・・・・・	260
· -·		アミノピリジン類の硬化触媒としての研究・・・・・	260
	-		

	2 現	睘状アミジン類によるエポキシ樹脂の硬化挙動・・・・・・・・・・	262
	3 D	DBU の合成とエポキシとの硬化挙動・・・・・・・・・・・・・・・・・・・・・・	263
	4 치	ポリスピロオルトカーボナートの添加による体積膨張・・・・・	264
6.2.	3 译	高耐熱硬化剤の開発・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	265
	1 清	舌性リン酸エステル・・・・・	265
	2 7	カリックスレゾルシンアレーンの化学修飾・・・・・・・・・・・・	265
	3 1	ゲリコールウリル誘導体・・・・・	266
6.3 潜	在性硕	更化剤の研究開発動向・・・・・	267
6.3.		替在性硬化剤の種類と特徴・・・・・	267
6.3.	2 ¬	マイクロカプセル型硬化剤・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	269
6.3.	3 7	スルホニウム塩の重合開始剤・・・・・	270
6.3.	4 <u>j</u>	リン酸塩による潜在性機能・・・・・	272
6.3.	5 1	ドラート塩の合成と応用・・・・・	273
6. 3.	6 7	アミノピリジン系の研究・・・・・	275
6. 3.	7 名	各社の主な潜在性硬化剤・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	275
	1 A	ADEKA ·····	275
	2 区	J国化成工業······	277
	3 哆	未の素ファインテクノ・・・・・	277
	4 Ξ	三新化学工業	278
	5 Ξ	三菱ケミカル・・・・・	279
	6 Т	℃&K TOKA·····	279
		大阪ガスケミカル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	280
	8 E	∃油·····	281
6.4 I	ポキシ	レ樹脂の光硬化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	281
6.4.	1 屴	Y.硬化の方法と特徴・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	281
6.4.	2 屴	光アニオン硬化の開発・・・・・	283
	1 屴	光塩基発生剤の開発・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	283
	2 ラ	チオール―エポキシ混合樹脂のアニオン硬化・・・・・・・・・・・・	284
	ב 3	エポキシ―ビスマレイミド樹脂のアニオン硬化・・・・・・・・・・・	285
6.4.	3 屴	光酸発生剤・光塩基発生剤·····	285
6.4.	4 汐	深紫外 LED を用いた光硬化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	287
6.4.	5 2	オキセタン樹脂の応用・・・・・	288
笛7音 エピ	よいは	問指メーカーの開発動向 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	289
		MIA/-//ーの用光動向 ミカル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	289 289
<i>i</i> . <u>i</u> —	交ノ、	× /4 / V	209

	7.	2	DIC		290
	7.	3	日本	化薬 ·····	294
	7.	4	日鉄	ケミカル&マテリアル・・・・	297
	7.	5	ADE	ЖА · · · · · · · · · · · · · · · · · · ·	299
	7.	6	日産	化学ほか・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	304
			1	日産化学	304
			2	JXTG エネルギー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	306
			3	プリンテック・・・・・	308
			4	オーリン/米国・・・・・	308
			5	三井化学	308
			6	ナガセケムテックス・・・・・	309
1	第8章	٤¥	≤導体	関連材料の技術開発動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	310
-	8.			キシ封止材料の技術動向・・・・・	310
	8	8. 1	L. 1		310
	8	· · 1	1.2		312
			1	高耐熱エポキシ封止材料・・・・・	312
			2	パッケージ技術の開発・・・・・	317
	8	8. 1	l. 3	銅ワイヤ対応材料・・・・・	320
			1	塩素の低減・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	320
			2	イオウ成分の低減・・・・・・	322
			3	高機能銅ワイヤの開発・・・・・	324
	8	8. 1	ι. 4	シート 状封止 材料······	326
	8	· · 1	l. 5		327
			1	圧縮成形法の開発・・・・・	327
			2	压縮成形用顆粒状封止材料·····	328
	8	8. 1	l. 6		331
	8.	2	封止	材料メーカーの開発動向・・・・・	332
	8	8. 2	2. 1	住友ベークライト・・・・・	332
	8	8. 2	2. 2	日立化成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	334
	8	3. 2	2. 3	パナソニック・・・・・	336
	8	3. 2	2.4	信越化学工業	338
	8	3. 2	2.5	京セラ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	339
	8	3. 2	2.6	日本合成化工・・・・・	340

8.3 碩	更化剤	削メーカーの開発動向・・・・・	340
8.3.	1	新日本理化·····	341
8.3.	2	ADEKA ·····	342
8.3.	3	明和化成	344
8.3.	4	DICほか・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	344
8.4 碩	更化你	足進剤の開発動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	349
8.4.	1	種類と特徴・・・・・	349
8.4.	2	リン系硬化促進剤の研究開発・・・・・	350
	1	耐熱性と信頼性の両立化・・・・・	350
	2	低温硬化潜在性の新規ホスホニウム塩の開発・・・・・・・・・・・・	351
8.4.	3	硬化促進剤メーカーのグレード・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	352
	1	北興化学工業・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	352
	2	四国化成工業・・・・・	353
	3	サンアプロ・・・・・	355
8.5 7	ノイラ	ラーの開発動向・・・・・	356
8.5.	1	球状シリカ・ナノシリカフィラー・・・・・・・・・・・・・・・・・・・・・	357
	1	超微粒子の封止材の流動性への影響・・・・・・・・・・・・・・・・・・	357
	2	結晶性球状シリカの開発・・・・・	358
	3	フィラーメーカーの主なグレード・・・・・・・・・・・・・・・・・・・・・・	359
8.5.	2	中空シリカ粒子の開発と応用・・・・・	362
8.5.	3	高熱伝導フィラー・・・・・	366
	1	デンカ・・・・・	366
	2	窒化アルミニウム・・・・・	368
	3	昭和電工	369
	4	酸化マグネシウム(マグネシア)・・・・・・・・・・・・・・・・・	370
	5	球状アルミナ・・・・・	372
	6	球状炭化ケイ素・・・・・	372
	7	グラフェン・・・・・	373
8.5.	4	表面修飾フィラーの研究開発・・・・・	374
	1	超臨界水熱合成法による有機修飾ナノ粒子・・・・・・・・・・・・	374
	2	モノマー付加ポリマーによる表面改質・・・・・・	375
	3	リビングラジカル共重合による有機無機複合ナノ粒子・・・・・	376
	4	固相メカノケミカル反応を用いたアルミナ微粒子の化学修飾・・・・・	377
	5	有機修飾酸化チタン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	377
8.5.		マイナス膨張係数フィラーの開発・・・・・・・・・・・・・・・・・・	378
	-		

	1	開発の歴史・・・・・	378
	2	ランタン酸化物・・・・・	378
	3	マンガン窒化物・・・・・・	379
	4	ルテニウム酸化物・・・・・	379
	5	ビスマス・ニッケル・鉄酸化物・・・・・	380
	6	バナジン酸鉛・・・・・	381
	7	リン酸ジルコニウムおよびタングステン酸ジルコニウム・・・・・	381
	8	球状ガラスフィラー・・・・・	383
8.6 力	ッフ	プリング剤の動向・・・・・	383
8.6.			383
	1	密着機構と効果・・・・・	383
	2	エポキシ樹脂中における反応性と接着機能・・・・・・・・・・・	384
	3	加水分解および縮合反応のコントロール・・・・・・・・・・・・・	385
8.6.	2	シランカップリング剤を用いた低吸水率化・・・・・・・・・・・・・	387
8.6.	3	信越化学工業の開発動向・・・・・	389
8.6.	4	モメンティブ・パフォーマンス・マテリアルズ・・・・・・・・・・・	390
8.6.	5	シランカップリング剤処理シリカ・・・・・・・・・・・・・・・・・・・・・・・・・	391
8.7 イ	オン	/ 捕捉剤の動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	393
8.7.		ハイドロタルサイトのイオン交換特性・・・・・・・・・・・・・・・・	393
8.7.	2	開発動向と適用例・・・・・	394
	1	東亞合成・・・・・	394
	2	協和化学工業・・・・・	396
	3	エポキシ樹脂への適用例・・・・・	396
8.8 液	 秋卦	対止材料の技術動向・・・・・	396
8.8.	1	アンダーフィル材に求められる性能・・・・・・・・・・・・・・・・	396
8.8.	2	改良研究の動向・・・・・	398
	1	反りとバンプ歪の予測・・・・・	398
	2	フィラー含有量と引張強度・・・・・	398
	3	パッケージ反りに及ぼす材料物性の最適化・・・・・・・・・・・・	399
	4	疲労き裂進展速度に及ぼすフィラー含有率の影響	400
8.8.	3	メーカーの開発動向・・・・・	400
	1	パナソニック・・・・・	400
	2	ナミックス・・・・・	402
	3	日立化成・・・・・・	403
	4	住友ベークライト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	404

	5	信越化学工業	404
	6	サンユレック・・・・・	404
	7	ナガセケムテックス・・・・・	406
	8	サンスター技研・・・・・	406
	9	ヘンケル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	407
	10	利昌工業 · · · · · · · · · · · · · · · · · · ·	407
8.9	ダイ	ボンディング材料の動向・・・・・	407
8.9	9.1	樹脂はんだペースト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	408
	1	Sn-Bi 系はんだペーストの開発 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	408
	2	樹脂強化型はんだペーストの硬化反応解析・・・・・・・・・・・・	409
	3	メーカーの動向・・・・・	410
8.9	9.2	ダイボンディングフィルム・・・・・	413
	1	要求特性と材料設計・・・・・	413
	2	アクリル/エポキシ混合系の相分離構造の解析・・・・・・・・・・・	414
	3	パルス 1H-NMR 法(核磁気共鳴分光法)による解析 ・・・・・・・・	415
	4	メーカー開発動向・・・・・	416
8.9	9.3	異方導電フィルム・・・・・	417
	1	ニッケルナノチューブによる ACF の開発・・・・・・・・・・・・・	417
	2	日立化成	418
	3	デクセリアルズ・・・・・	419
8.10	LED	用エポキシ樹脂・・・・・	421
8.1	0. 1	技術動向 ••••••	421
8.1	0. 2	LED 封止材の技術動向・・・・・	422
	1	開発の変遷と要求特性・・・・・	422
	2	ダイセルの開発動向・・・・・	423
	3	日産化学「TEPIC」 ······	424
	4	サンユレック・・・・・	425
	5	ファインポリマーズ・・・・・	425
	6	リンテック・・・・・	425
8.1	0. 3	リフレクター用エポキシ樹脂の開発 ・・・・・・・・・・・・・・・・・	426
	1	日立化成・・・・・・	426
	2	パナソニック・・・・・	427
	3	ダイセル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	428
	4	クラスターテクノロジー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	428
8.1	0. 4	エポキシベース樹脂で封止した新規な LED・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	429

8.1	1 ウ	1エノ	ハレベルレンズ用エポキシ樹脂 ・・・・・・・・・・・・・・・・・・・・・・・	429
第9章	プリ	ント	、配線板関連材料の技術動向 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	431
9.1			/ ト配線板の動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	431
9.	1.	1	市場動向と技術開発動向・・・・・	431
		1	技術開発動向・・・・・	431
		2	ハロゲンフリー化・・・・・	432
		3	低誘電損失基板の開発・・・・・	435
		4	低熱膨張・低反りの検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	438
9.	1.	2	車載用プリント配線板の技術動向・・・・・・・・・・・・・・・・・・・・	443
		1	ADAS・自動運転への対応 · · · · · · · · · · · · · · · · · · ·	444
		2	環境車への対応・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	445
9.	1.	3	宇宙分野への適用・・・・・	446
9.2	2 基	「板ン	メーカーの開発動向・・・・・	446
9.	2.		日立化成	447
9.	2.	2	パナソニック・・・・・	448
9.	2.	3	住友ベークライト・・・・・	449
9.	2.	4	利昌工業·····	449
9.	2.	5	日本シイエムケイ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	450
9.	2.	6	メイコー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	451
9.3	8 ブ	ペック	テージ基板の動向・・・・・	451
9.	3.	1	メーカーの技術動向・・・・・	452
		1	イビデン・・・・・	452
		2	京セラ・・・・・・	452
		3	新光電気工業	452
		4	富士通インターコネクトテクノロジーズ・・・・・・・・・・・・・	452
9.	3.	2	反りの解析検討	453
		1	応力緩和性基板材料による反り低減・・・・・・・・・・・・・・・・・・・・・	453
		2	パッケージ基板の反りに及ぼす樹脂収縮の影響	454
9.	3.	3	基板材料メーカーの開発動向・・・・・	455
		1	日立化成	455
		2	パナソニック・・・・・	455
		3	住友ベークライト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	456
		4	三菱ガス化学・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	456
		5	利昌工業・・・・・・	457

9.3	3. 4	1 層間絶縁材料の動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	457
		し 技術動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	457
	4	2 味の素ファインテクノ・・・・・	458
		3 積水化学工業·····	459
	Z	4 太陽インキ製造・・・・・	459
9.4	フレ	~キシブルプリント配線板・・・・・	460
9.4	1. 1	l 車載用 FPC の技術動向・・・・・	460
9.4	4. 2	2 低誘電エポキシ樹脂系接着剤の開発・・・・・・・・・・・・・・・・・	461
		L 東亞合成·····	461
	2	2 デクセリアルズ·····	462
	3	3 有沢製作所·····	463
	L	4 その他・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	463
9.5	レシ	ジスト材料・・・・・	464
9.5	5.	し ソルダーレジストの技術動向・・・・・	464
	-	l 要求特性と技術動向・・・・・	464
	4	2 オキサゾリン化合物による低誘電化・・・・・・・・・・・・・・・・・・・・・・	465
		3 熱応力の解析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	466
	4	4 メーカーの開発動向・・・・・	466
9.5	5. 2	2 MEMS 用フォトレジスト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	468
		L MEMS とレジスト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	468
	2	2 適用、検討例	470
	3	3 MEMS 用レジストメーカー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	470
笛 10 音	エポ	キシ樹脂系接着剤の技術動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	472
10, 1		音剤の種類と特性向上の検討 ·····	472
10.			472
10.			472
- • •		- 耐熱性と強靭性の向上検討·····	472
	4	2 低温・短時間硬化接着剤の開発·····	474
10. 2	構ì	告用接着剤・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	475
10. 2			475
10. 2			476
		3 ゴム・エラストマーによるエポキシ樹脂の改質・・・・・	477
10.			478

10. 3	自	動車	亘用接着剤の開発 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	478
10.	3.	1	自動車への接着剤適用状況・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	478
10.	3.	2	NEDO「構造材料用接着技術の開発」・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	479
10.	3.	3	異種材接着用エポキシ樹脂系接着剤 ・・・・・・・・・・・・・・・	481
		1	エポキシ/変性シリコーン接着剤・・・・・	481
		2	応力緩和・高弾性エポキシ樹脂系接着剤・・・・・・・・・・・・・	482
10.	3.	4	ウエルドボンド接着 ・・・・・	483
		1	トヨタ自動車の採用・・・・・	483
		2	市場における劣化推定技術の開発・・・・・・・・・・・・・・・・・・・・・	484
10. 4	導	電性	L接着剤の技術動向 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	485
10.	4.	1	技術動向と特性 ・・・・・	485
10.	4.	2	導電性発現メカニズムの研究 ・・・・・・・・・・・・・・・・・・・・・・	487
		1	硬化収縮と導電性発現機構・・・・・	487
		2	自由減衰振動法によるキュアプロセス解析・・・・・・・・・・・・	487
		3	金属間における界面電気抵抗解析・・・・・・・・・・・・・・・・・・・・・・・	488
		4	導電性接着剤の熱伝導率測定法の研究・・・・・・・・・・・・・・・・	489
10.	4.	3	銅系、銀系導電性接着剤の開発 ・・・・・・・・・・・・・・・・・・・・・・	489
10.	4.	4	メーカーの開発動向 ・・・・・	490
		1	スリーボンド・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	491
		2	藤倉化成・・・・・・	491
		3	味の素ファインテクノ・・・・・	491
		4	ヘンケル・・・・・	492
10. 5	光	三学月]のエポキシ接着剤 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	492
10.	5.	1	技術動向	492
10.	5.	2	高耐湿性光学接着剤の開発 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	494
10.	5.	3	低収縮タイプ接着剤 ・・・・・	494
		1	味の素ファインテクノ・・・・・	494
		2	スリーボンド・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	495
林 11 幸		19 2		10.0
			シ樹脂塗料の技術動向······	496
11. 1	쟐	科の)種類と特徴 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	496
11. 2	重	防食	ま対応塗料・VOC 対応塗料 ・・・・・	497
11.	2.	1	重防食塗装	497
11.	2.	2	塗料メーカーの開発動向 ・・・・・	498
		1	関西ペイント・・・・・	498

		2	日本ペイント・・・・・	501
		3	大日本塗料	501
11. 3	彩	分体道	金料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	503
11.	3.	1	粉体塗料の市場動向と特徴・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	503
11.	3.	2	メーカーの開発動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	504
		1	日本ペイント・・・・・	504
		2	大日本塗料	504
		3	住友ベークライト・・・・・	505
		4	ソマール他・・・・・	505
11. 4	送	全料月	月エポキシ樹脂・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	506
11.	4.	1	弱溶剤可溶エポキシ樹脂・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	506
11.	4.	2	水性エポキシ樹脂・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	507
11.	4.	3	変性エポキシ樹脂 ・・・・・	508
11. 5	價	言着逡	き装用エポキシ樹脂・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	509
11.	5.	1	電着塗装の歴史と原理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	509
11.	5.	2	メーカーのグレード ・・・・・	510
11. 6	貫	言磁波	皮シールド塗料 ・・・・・	511
11.	6.	1	カーボンナノチューブによる電磁波シールド塗料・・・・・	511
11.	6.	2	電波吸収型シールド塗料 ・・・・・	512
体 10 本	éth ((H 74)		510
第12章			化エポキシ複合材料······	513
			' の開発動向 · · · · · · · · · · · · · · · · · · ·	513
		1		513
	1.		種類と特徴 · · · · · · · · · · · · · · · · · · ·	514
12.	1.		特許にみる技術動向 · · · · · · · · · · · · · · · · · · ·	514
12.	1.		QM開発動向 ····· NEDO の開発プログラムと実績・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	516
		1 2	NEDO の開発/ログノムと実績・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	516
			ぜ が が が じ の し ・・・・・・・・・・・・・・・・・・・・	519
		3 4	^難 怒性の向上・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	523 524
		4 5	 盗有住の向上・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	524 526
		6	温敏化の切先 自己修復性 CFRP の開発 · · · · · · · · · · · · · · · · · · ·	520 529
		0 7		529 531
		8	今电圧の内子・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	531
		0		001

12.	1.	5	実用化の動向 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	532
		1	CFRP 用中間材料の適用動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	532
		2	航空機への適用動向・・・・・	533
		3	自動車への適用動向・・・・・	536
		4	風力発電用ブレードへの適用・・・・・	538
		5	CFRP 製プロペラの開発・・・・・	541
		6	その他の実用化製品・・・・・	542
12. 2	セ	ミルロ	ロースナノファイバー複合材料 ・・・・・	542
12.	2.	1	基本特性と開発動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	542
		1	東京大学の TEMPO 触媒酸化法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	543
		2	京都プロセス・・・・・	543
		3	その他の技術動向・・・・・	544
12.	2.	2	実用化の動向 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	544
12.	2.	3	国家プロジェクトによる推進 ・・・・・・・・・・・・・・・・・・・・・・・・	545
12.	2.	4	CNF エポキシ複合材料・・・・・	546
		1	CNF 変性したエポキシ樹脂プリプレグの開発・・・・・・・・・・・	546
		2	表面修飾 CNF エポキシ複合材料の力学特性 ・・・・・・・・・・・	547
		3	CNF 複合エポキシ樹脂マスターバッチの開発・・・・・・・・・・・	548
		4	プリント配線板用絶縁材料・・・・・	549
12. 3	力	7 — 7	ボンナノチューブ複合材料 ・・・・・	549
12.	3.	1	特性と開発動向 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	549
		1	市場動向・・・・・	549
		2	単層 CNT の合成法開発 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	550
12.	3.	2	エポキシ複合材料の研究開発 ・・・・・・・・・・・・・・・・・・・・・・	551
		1	力学特性の向上検討・・・・・	551
		2	線膨張係数の温度依存性・・・・・	553
		3	配向 CNT による電気特性の向上 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	554
12.	3.	3	実用化の動向 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	555
		1	ゴルフクラブへの適用・・・・・	555
		2	バドミントンラケットへの採用・・・・・	555
12. 4	タ	マン	ペク質繊維 ・・・・・	556
		1	人工クモ糸の開発・・・・・	557
		2	ジャケットへの適用・・・・・	557
		_		
第13章	エフ	ポキ	シ樹脂の応用製品・・・・・・	558

13. 1	トノィ	インプリント ・・・・・・	558
13. 1.	1	技術の概要と動向 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	558
13. 1.	2	NIL 用樹脂の開発 · · · · · · · · · · · · · · · · · · ·	559
	1	メーカーの開発動向・・・・・	559
	2	エポキシ系 NIL 用樹脂 ・・・・・	560
13. 2)	七導派	皮路 ••••••••••••••••••••••••••••••••••••	561
13. 2.	1	ポリマー光導波路の開発動向 ・・・・・	561
13. 2.	2	エポキシ樹脂による開発 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	561
13. 3 2	エポニ	キシモノリスの技術動向 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	562
13. 3.	1	エポキシモノリスの作製技術 ・・・・・	562
13. 3.	2	技術開発動向 ••••••	563
	1	異種材料接合の研究・・・・・	563
	2	ポリマーブラシの付与・・・・・	566
	3	高撥水性有機モノリス・・・・・	566
13. 3.	3	応用製品の開発・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	567
	1	有機合成用リアクター・・・・	567
	2	シート状モノリス・・・・・	568
13. 4	電力様	幾器への適用 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	569
13. 4.	1	エポキシ樹脂コンポジットの適用 ・・・・・・・・・・・・・・・・・・・・	569
13. 4.	2	エポキシモールドの硬化条件、応力緩和の検討・・・・・	570
13. 4.	3	高靭性エポキシ樹脂組成物 ・・・・・	571
	1	真空遮断機	571
	2	固体絶縁スイッチギヤ・・・・・	572
13. 4.	4	酸化亜鉛/エポキシ樹脂コンポジットによるブッシング・・・・・	572
13. 5)	七造刑	ジ技術・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	573
13. 5.	1	技術開発動向 · · · · · · · · · · · · · · · · · · ·	573
13. 5.	2	光造形用エポキシ樹脂・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	574
	1	樹脂の基本構成・・・・・	574
	2	特性向上の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	575
	3	交流絶縁破壊特性の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	576
	4	メーカーの主なグレード・・・・・	576
13. 6	-	メーカーの主なクレート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	576 578
	リニス		

13. 7 エポ:	キシ樹脂によるスポーツ保護具 ・・・・・・・・・・・・・・・・・・・・・・・・	580
13. 7. 1	軟質エポキシフォームによる頭部保護帽・・・・・・・・・・・・・・	580
13. 7. 2	架橋密度操作エポキシ樹脂による柔軟性保護具・・・・・・・・・・	581
13. 7. 3	ソフト CFRP による短下肢装具 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	582
13. 8 発泡:	エポキシ樹脂 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	583
13. 8. 1	エポキシ発泡成形の研究 ・・・・・	583
1	気泡構造制御の研究・・・・・	583
2	傾斜発泡エポキシ樹脂による一体成形の検討・・・・・・・・・・・	585
13. 8. 2	実用化の動向 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	586
1	ガラス研磨用パッドの開発・・・・・	586
2	自動車用フレーム・・・・・	588
3	発泡エポキシ樹脂・シート・・・・・	589
結言		591
参考文献		592