躍進するポリイミドの最新動向V

2013年01月発行

特別版(CD付): 定価126,500円(消費税込み)

通常版: 定価104,500円 (消費税込み)

住ベリサーチの調査研究レポート

住ベリサーチ株式会社 技術調査部 〒140-0002 品川区東品川2-5-8 天王洲パークサイドビル16F TEL 03-5462-7036 FAX 03-5462-7040

目 次

第	1 章	経	情 言	1
第	2 章	ホ	。 『リイミドの種類とその特徴	2
	2.1	身	⊧熱可塑性ポリイミド	2
	2.	1.1	非熱可塑性ポリイミドの構造	2
	2.	1.2	非熱可塑性ポリイミドの特徴	3
		1	ポリイミドの一次構造	3
		2	ポリイミドの凝集構造	3
	2.	1.3	非熱可塑性ポリイミドの用途	4
	2.2	. 索	ぬ可塑性ポリイミド	4
	2.	2.1		4
		1	熱可塑性ポリイミドの分類	
		2	熱可塑性ポリイミドの開発方法	5
	2.	2.2	熱可塑性ポリイミドの開発	6
		1	熱可塑性ポリイミド「AURUM」の開発	6
		2	熱可塑性ポリイミド「Super AURUM」の開発	7
	2.	2.3	熱可塑性ポリイミドの特性改良	8
		1	高耐湿熱性の改良	8
		2	低温接着性の改良	9
	2.	2 . 4	熱可塑性ポリイミドの用途展開	10
		1	フレキシブル回路基板用銅張積層板	
		2	次世代超音速航空機用炭素繊維プリプレグ	10
	2.3	索	A.硬化性ポリイミド	10
	2.	3 . 1	熱硬化性ポリイミドの開発	10
		1	従来の開発品	10
		2	BMI	11
		3	PMR-15	11
	2.	3.2	高靱性熱硬化性ポリイミドの開発	12
		1	PETI-5	
		2	TriA-PI	13
		3	TriA-SI	14
		4	PMDA/p-ODA ; BAFL/PEPA	14
	2.4	. 6	J溶性ポリイミド	15
	2.	4.1	- バー・・・ 可溶性ポリイミドの開発	
		1	可溶性ハイパーブランチポリイミド	15
		2	ハイパーブランチポリイミドの合成	15
		3	光機能性ハイパーブランチポリイミド	17
	2.	4.2	可溶性ポリイミドの不溶化方法	20
		1	エポキシ樹脂を添加し不溶化する方法	20
		2	アクリル樹脂を添加し不溶化する方法	23
		3	末端をフェニルエチニルフタルイミド基で修飾する方法	23

2.5 脂	『環式ポリイミド	
2.5.1	脂環式ポリイミドの必要性	24
2.5.2	脂環式ポリイミドの開発	25
1	代表的な脂環式ポリイミド	25
2	脂環式ポリイミドの合成方法	27
2.5.3	脂環式ポリイミドの特性	28
2.6 非	■対称ポリイミド	29
2.6.1	非対称ポリイミドの特徴	
2.6.2	各種の非対称ポリイミド	30
1	非対称ビフェニル酸二無水物(BPDA)/ジアミンからなるポリイミド	30
2	その他の非対称酸二無水物からなるポリイミド	
3	その他の非対称ジアミンからなるポリイミド	31
2.7 変	5性ポリイミド	31
2.7.1	シリコーン変性ポリイミド(SPI)	31
1	シリコーン変性ポリイミドの合成	32
2	シリコーン変性ポリイミドの特徴	32
3	シリコーン変性ポリイミドの用途	33
2.7.2	フッ素変性ポリイミド	33
1	フッ素変性ポリイミドの合成	33
2	フッ素変性ポリイミドの特徴	35
3	フッ素変性ポリイミドの用途	35
2.7.3	その他変性ポリイミド	35
1	トリアジン変性ポリイミド	35
2	フェノール変性ポリイミド	36
3	ウレタン変性ポリイミド	37
2.8 そ	つの他ポリイミド	37
2.8.1	ポリアミドイミド	37
1	ポリアミドイミドの合成	37
2	ポリアミドイミドの特徴	38
3	ポリアミドイミドの用途	38
2.8.2	ポリエーテルイミド	39
1	ポリエーテルイミドの合成	39
2	ポリエーテルイミドの特徴	39
3	ポリエーテルイミドの用途	40
2.8.3	その他のポリイミド	41
笠っ辛 ギ	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	40
	基本的な合成方法	
	ポリイミドの2段階合成法	
1	1 段目のポリアミド酸形成反応の技術ポイント	
2	2段目のイミド化反応の技術ポイント	43
.	加熱イミド化法、化学的イミド化法	, .
3.1.2	ポリイミドの 1 段階合成法	
1	溶媒を用いる1段階合成法	
2	溶媒を用いない1段階合成法	45

3.1	. 3	ポリイミド合成技術上の重要ポイント	46
	1	原料の選択	46
	2	合成時の条件	46
	3	原料の添加 (仕込) 順序	47
	4	ポリアミド酸の保存条件	48
	5	ポリアミド酸のイミド化時の注意	48
3.1	. 4	新しい環化方法の開発	49
	1	カルボニルジイミダゾール化合物による低温環化	49
	2	金属化合物からなる脱水閉環触媒による低温環化	49
	3	マイクロ波照射による低温環化	50
3.2	高	精密ポリイミドの合成	50
3.2	. 1	(プレ)ポリマーの精密な設計と合成	50
3.2	. 2	新規な硬化概念とその硬化反応	52
3.2	. 3	硬化反応の精密な制御方法	53
	1	分子配向の制御方法	53
	2	架橋反応の制御方法	53
3.3	ポ	リマーアロイ化によるポリイミドの合成	54
3.3		ポリイミド同士の分子複合材料の開発・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	1	ポリアミド酸の物理的ブレンド系	54
	2	交換反応が起こらない物理的ブレンド系	55
3.3	. 2	他ポリマーとのポリマーアロイの開発	55
	1	ポリベンゾオキサジンとのポリマーアロイ	55
	2	ポリエーテルエーテルケトンとのポリマーアロイ	57
	3	ポリベンズイミダゾールとのポリマーアロイ	58
	4	ポリベンズビスチアゾールとのポリマーアロイ	58
	5	「アラミド」とのポリマーアロイ	58
	6	エポキシ樹脂とのポリマーアロイ	
	7	フェノール樹脂とのポリマーアロイ	59
3.4	有	機・無機ハイブリッドポリイミドの合成	59
3.4	. 1	有機・無機ハイブリッドポリイミドの合成方法	59
3.4	. 2	各種無機物とのハイブリッド材料の開発	60
	1	シリカハイブリッド	
	2	クレイハイブリッド	63
	3	二酸化チタン(TiO ₂ 、チタニア)ハイブリッド	
	4	酸化アルミニウム(Al ₂ O ₃ 、アルミナ)ハイブリッド	
	5	酸化亜鉛(ZnO)ハイブリッド	
3 . 4	. 3	ポリイミドーシリカハイブリッド材料の応用	
	1	ポリイミドーシリカハイブリッドフィルム	
	2	メソ多孔性ベンゼンシリカハイブリッド膜	
	3	絶縁被膜用ナノコンポジットワニス	69

3.5	蒸	。 着による薄膜ポリイミドの合成	70
3.5	. 1	蒸着重合法による薄膜ポリイミドの開発	71
3.5	. 2	ペリレンを骨格に持つポリイミド蒸着重合膜の開発	
	1	ペリレンを骨格に持つポリイミド蒸着重合膜	
	2	ペリレンを骨格に持つ配向制御された蒸着重合膜	73
3.5	. 3	高周波スパッタリング法によるポリイミド薄膜の開発	
3.5	. 4	プラズマ支援蒸着重合法によるポリイミド薄膜の開発	
第 4 章	ポ	リイミドの樹脂形状	77
4 . 1	朩	ポリイミドフィルム	77
4.1	. 1	ポリイミドフィルムの種類	77
	1	標準厚のポリイミドフィルム	77
	2	極薄のポリイミドフィルム	80
	3	超極薄のポリイミドフィルム	80
4 . 1	. 2	ポリイミドフィルムの製造装置	82
4 . 1	. 3	ポリイミドフィルムの製造条件	82
	1	ポリアミド酸溶液の技術ポイント┈┈┈	82
		貯蔵安定性の向上、分子量の制御	
	2	ポリアミド酸フィルムの技術ポイント	83
		乾燥条件の決定、残留溶媒の影響	
	3	イミド化反応の技術ポイント	83
		熱イミド化過程での問題点、化学イミド化過程での問題点	
	4	ポリイミドフィルムの製造条件と物性の関係	84
		膜靱性、ガラス転移温度、面内配向、熱膨張係数	
4.2	才	^パ リイミドワニス	86
4.2	-		
	1	耐熱ワニスの必要性	86
	2	耐熱ワニスの種類	87
4.2	. 2	新しいポリイミドワニスの開発	
	1	シラン変性ポリイミドワニスの開発	88
	2	インクジェット印刷機用ポリイミドインクの開発	89
4.3	//	⁸ リイミド成形材料	80
4.3	_	・シーコー/3///ショイー - 非熱可塑性ポリイミド成形材料	
	1	デュポンの「ベスペル」	
	2	宇部興産の「ユピモール」	
4.3		熱可塑性ポリイミド成形材料	
4.3		熱硬化性ポリイミド成形材料	
	1	ビスマレイミド樹脂	
	2	マレイミド系樹脂	
	3	マレイミド樹脂の応用	
		e e e e e e e e e e e e e e e e e e e	

4.4 不	一フスホリイミト	96
4.4.1	ポーラスポリイミドの開発	96
1	ポーラスポリイミドの作製技術	96
2	新しいポーラスポリイミドの作製方法	97
4.4.2	ポーラスポリイミドの実用化	98
1	超臨界流体による半導体用ナノポーラスポリイミドの開発	98
2	プリンタブルエレクトロニクス用多孔質フィルムの開発	
3	貫通孔を有するセパレータ用ポリイミド膜の開発	
4	断熱用ポリイミドフォームの開発	
4.5 ポ	リイミドファイバー	
4.5 小 4.5.1	プイミドファイバーポリイミド繊維の開発	
	ポリイミド繊維「P84」	
1	ポリアミドイミド繊維「Kemel」	
2	- · · · · · · · · · · · · · · · · · · ·	
3	ポリエーテルイミド繊維「PEI」ポリイミドナノファイバーの開発	
4.5.2	* * * * * * * * * * * * * * * * * * *	
1	エレクトロスピニング法によるナノファイバーの創製	
2	機能性ナノファイバーの開発	
3	ナノファイバー不織布の工業化研究	
4.6 ポ	リイミド微粒子	105
4.6.1	沈殿重合法によるポリイミド微粒子の開発	
1	サブミクロンサイズのポリイミド微粒子の調整	106
2	ミクロンサイズのポリイミド微粒子の調整	
3	ポリイミド微粒子の表面修飾	
4	ポリイミド微粒子の特徴と応用性	108
4.6.2	再沈法によるポリイミド微粒子の開発	
1	再沈法によるPIナノ粒子の作製	
2	PIナノ粒子の多孔質化	
3	PIナノ粒子の光機能化	
4.6.3	ポリイミドとシリカゲルとの複合粒子の開発	109
4.7 ポ	リイミドゲル	110
	高分子ゲルの構造とその特性	
1	ゲルの複雑構造	110
2	各種の高分子ゲル	
4.7.2	ジャングルジム型ポリイミドゲルの開発	111
1	末端架橋ゲルの合成	111
2	網目構造の高密度化	112
第5章 ポ	リイミドの特性とその改良	112
	リイミドの構造と特性の関係	
	ポリイミドの一次構造	
1	一次構造の特徴	
2	不均一二相構造の特徴	
	ポリイミドの秩序相	
1	ポリイミドの凝集構造	
2	ポリイミドの分子鎖配列	114

5 . 1	. 3 ポリイミドのCT錯体	114
	1 分子内か分子間か	114
	2 ポリイミドの光電導	115
5.1	. 4 ポリイミドの高次構造	115
	1 分子鎖配向度の向上	115
	2 重合相変化による高次構造化	116
5.2	耐熱性の改良	117
5.2	. 1 ポリイミドの耐熱性	117
	1 ポリイミドの物理的耐熱性	117
	2 ポリイミドの化学的耐熱性	118
5.2	. 2 耐熱性の改良	119
	1 芳香族ポリイミド	119
	2 脂肪族ポリイミド	119
	3 熱可塑性ポリイミド	119
	4 可溶性ポリイミド	120
	5 熱硬化性ポリイミド	121
5.3	接着性の改良	123
5.3	. 1 接着性の良いポリイミドの開発	123
	1 接着性の良いポリイミド系接着剤	123
	2 金属接着性の良いポリアミド酸ワニス組成物	123
	3 銅箔接着力が優れる銅箔積層ポリイミドフィルム	123
	4 銅箔接着力が優れるポリイミド樹脂複合銅箔	124
	5 メッキ銅との密着性に優れるポリイミド	124
	6 熱伝導性が優れるポリイミド系接着剤	124
5.3	. 2 接着性の良いポリイミド用接着剤の開発	126
	1 超薄膜分子接着剤トリアジン化合物	126
	2 グリシジル基含有ポリシルセスキオキサン	
5.3		
	1 湿式法による表面改質	129
	アルカリ水溶液、グラフト重合、超臨界CO₂、フッ酸処理	
	2 乾式法による表面改質	133
	イオン照射、電子線照射、レーザー照射、紫外線照射	
	3 プラズマによる表面改質	134
	マイクロ波、高周波、誘導結合、ECR、放電プラズマ	
5.3		
	1 熱処理による金属表面の劣化	
	2 金属用カップリング剤による改良	
	3 NiCr膜による銅配線接着力の向上	
5.4	感光性の改良	
5.4		
	1 感光性樹脂組成物配合用の感光性イミドアクリレートモノマー	
	2 ベンゾフェノン骨格を主鎖に有する組成物	
	3 光酸発生剤と架橋剤を組み合わせた化学増幅型組成物	
	4 光塩基発生剤を配合した低温硬化組成物	
	5 感光性ハイパーブランチポリイミド樹脂組成物	143

5.4	. 2	ネガ型感光性ポリベンゾオキサゾールの開発	143
	1	光酸発生剤と架橋剤を組み合わせた化学増幅型組成物	143
5.4	. 3	ポジ型感光性ポリイミドの開発	144
	1	o-二トロベンジルエステル型	144
	2	化学增幅系	144
	3	ポリ(ヒドロキシイミド) (PHI)系	145
	4	アセタール系	145
5.4	. 4	ポジ型感光性ポリベンゾオキサゾールの開発	145
	1	酸誘導体を添加した高感度組成物	145
	2	酸誘導体と増感剤を添加した高感度組成物	146
	3	光脱離性基含有酸誘導体を添加した高感度組成物	
	4	光脱離性基含有酸誘導体と光酸発生剤を添加した高感度組成物	
	5	非含フッ素全芳香族型PHAからなる低コスト組成物	147
	6	酸発生剤を添加した低温環化組成物	
5.4	. 5	各社の研究開発状況	148
	1	富士フイルムの研究開発	
	2	住友ベークライトの研究開発	
	3	東洋紡の研究開発	
	4	HDマイクロシステムズの研究開発	
	5	大日本印刷の研究開発	
	6	カネカの研究開発	
	7	旭化成の研究開発	
	8	東レの研究開発	
	9	信越化学工業の研究開発	
	10	三井化学の研究開発	
	11	東亜合成の研究開発	
5.5	誘	電率の改良	
5.5	. 1	ナノポーラス化による低誘電率化	
	1	ナノポーラス化の方法	
	2	超臨界二酸化炭素の応用	
	3	イオン結合発泡体の応用	
	4	特殊発泡剤の応用	
	5	中間層がポーラスなフィルムの応用	
	6	三次元架橋の応用	
	7	イオン結合発泡体の応用	
	8	感光性樹脂の応用	
	9	シリカハイブリットの応用	
5.5		フッ素変性による低誘電率化	
	1	架橋による改良 #素タによる改良	
	2	共重合による改良 ブレンドによる改良	
	3 4	プレントによる以及 等方性の改良	
	4 5	等力性の改良····································	
	6	同返明日の以及····································	
	7	その他の改良	
	,	く ** iロ ** *^	103

5.5.	. 3	脂環式構造による低誘電率化	163
	1	シクロ環を有するジアミンと酸による改良	164
	2	シクロヘキサンジアミンによる改良	164
	3	シクロブタンテトラカルボン酸による改良	165
	4	ビシクロヘプタンジアミンによる改良	166
	5	シクロヘキサンテトラカルボン酸による改良	167
	6	シクロアルカンジカルボン酸による改良	167
	7	シクロアルカンジアミノジヒドロ化合物による改良	167
5.5.	4	嵩高い構造の導入による低誘電率化	168
	1	アダマンタン基による改良	
	2	ノルボルネン骨格による改良	168
	3	ジエチルビニルエーテル架橋による改良	169
	4	ジメチルインダン骨格による改良	169
	5	キサンテン骨格による改良	169
	6	フルオレン骨格による改良	
	7	メタ構造による改良	
5.5.	. 5	その他の方法による低誘電率化	170
	1	低極性化による低誘電率化	
		アルキル基導入、共重合、無極性化による改良	
	2	シリコーンの導入による低誘電率化	172
	3	シアネート基の導入による低誘電率化	
	4	低誘電率材料の混合による低誘電率化	
	5	蒸着重合による改良	
	6	中空ナノ粒子による改良	176
5.6	ᄺ	化性(低温環化)の改良	177
5.6.		閉環型ポリイミドによる改良	
0.0.	1	低温硬化型ポジ型感光性樹脂	
	2	低温硬化型ネガ型感光性樹脂	
	3	エポキシ化合物配合低温硬化性樹脂	
5.6.			
	1	閉環型樹脂に光塩基発生剤を添加	
	2	前駆体に熱塩基発生剤を添加	
	3	前駆体に光塩基発生剤を添加	
5.6.	. 3	その他による改良	
	1	高透明樹脂構造	
	2	マイクロ波照射	
	3	硬化促進剤添加	
	4	可塑剤添加·······	
	5	シロキサン導入····································	
	6	その他	
5.7		膨張係数の改良	
5.7		樹脂構造による改良	
5.7.	1	低熱膨張ポリイミドの構造	
	•	ポリイミドの分子構造、ポリイミドの面配向	107
	2	エステル構造の導入	188
	3	ベンゾオキサゾール構造の導入	
	_	- / 1 / / / IT T IT IT IT IT IT	190

5.7	. 2	添加物による改良	191
	1	クレイ	191
	2	シリカ	193
	3	マンガン窒化物	193
5.8	透	明性の改良	194
5.8	. 1	紫外・可視域の光透過性の改良	194
	1	電荷移動(CT)相互作用の低減	194
	2	高光透過性モノマーの選択	195
	3	高透明性ポリイミドの開発	196
5.8	. 2	近赤外域の光透過性の改良	197
5.8	. 3	無色透明ポリイミドの分子設計	198
	1	分子軌道計算による検討	198
	2	高透明な脂環式ポリイミドの合成	199
5.8	. 4	各社の開発状況	200
	1	出光興産の研究開発	200
	2	富士写真フイルムの研究開発	201
	3	デュポン社の研究開発	202
	4	三菱ガス化学の研究開発	
5.9	光	機能性の改良	203
5.9		ポリイミドの蛍光発光性の改良	
	1	蛍光発光の原理	203
	2	各種ポリイミドの蛍光発光	
5.9	. 2	ポリイミドの屈折率の改良	206
	1	屈折率の原理	206
	2	各種ポリイミドの屈折率	208
5.10	そ	の他の特性の改良	210
5 .10	. 1		210
	1	ジアミノジベンゾピラノンによる改良	211
	2	オキシベンジジンによる改良	211
	3	シクロヘキサンテトラカルボン酸による改良	
	4	ベンゾオキサジンによる改良	
	5	酸化ジルコニウムによる改良	
5 .10	. 2	エッチング性の改良	214
	1	溶液によるエッチング	214
	2	プラズマによるエッチング	
	3	イオンビームによるエッチング	
	4	レーザーによるエッチング	216
5 .10	. 3	熱伝導性の改良	
5 .10	. 4	摺動性の改良	
	1	炭素系材料による改良	
	2	固体潤滑剤による改良	
	3	高周波スパッターによる改良	

第6章	ポリイミドの応用とその展開	222
6.1	半導体チップコーティング用ポリイミド材料の開発	222
6.1.		
	1 半導体チップ表面コーティング技術	222
	2 半導体チップ表面コーティング用ネガ型感光性樹脂	224
	代表的なネガ型感光性樹脂、ネガ型感光性樹脂の改良	
	3 半導体チップ表面コーティング用ポジ型感光性樹脂	227
	特徴、ポジ型ポリイミド、ポジ型ポリベンゾオキサゾール	
6.1.	2 半導体用層間絶縁膜材料	235
	1 低誘電率層間絶縁膜材料の必要性	235
	2 低誘電率層間絶縁膜材料用樹脂の開発状況	235
	低誘電率ポリイミド、低誘電率ポリベンゾオキサゾール	
6.1.	3 半導体用再配置配線材料	242
	1 半導体用再配置配線材料の必要性	242
	2 半導体用再配置配線材料用樹脂の開発状況	243
	開発方法、ポジ型感光性ポリベンゾオキサゾール	
6.2	その他半導体関連用ポリイミド材料の開発	247
6.2.	1 半導体封止用材料	247
	1 樹脂封止材料	247
	樹脂封止材料の必要特性、樹脂封止材料の改良	
	2 アンダーフィル用液状樹脂	252
	アンダーフィルの必要特性、アンダーフィルの改良	
	3 封止シート(接着フィルム)	254
	封止シートの必要特性、封止シートの改良	
6.2.	2 光半導体封止用透明材料	256
	1 光半導体用透明封止材料の必要特性	
	2 光半導体封止用樹脂の改良	257
	ポリイミド系、エポキシ系、エポキシ・シリコーンハイブリッド系	
6.2.		
	1 チップマウンティング用ペースト	
	2 チップマウンティング用フィルム	
6.2.		
	1 リード固定用テープ	
	2 ダイシング用テープ	264
6.3	電子回路用フレキシブル材料の開発	264
6.3.	1 フレキシブル基板用フィルム材料	
	1 極薄ポリイミドフィルム	
	2 低熱膨張ポリイミドフィルム	
	3 その他ポリイミドフィルム	
6.3.		
	1 キャスティング法	
	2 ラミネート法	
	3 メタライジング注	270

6.3.3	2 層フレキシブル回路基板の作製方法	271
1	電子写真を利用した直接配線形成技術	271
2	紫外光照射を利用した微細回路形成技術	272
3	レーザーを利用した銅配線形成技術	272
4	インクジェット技術を利用した配線形成技術	273
5	導電性インクによる微細配線の形成	274
	銀ナノパーティクル、銅ナノパーティクル、金ナノパーティクル	
6	2 層フレキシブル回路基板によるCOF用フレキ	280
6.3.4	その他のフレキシブル基板	282
1	3 層フレキシブル基板	282
2	多層フレキシブル基板	283
3	その他のフレキシブルプリント配線板	287
	リジッドフレキ、透明フレキ、立体フレキ、長尺フレキ、厚銅フレキ	
6.3.5	フレキシブル基板の特性の改良	290
1	高密着化	
2	高精細化	
3	高耐折化	
4	耐マイグレーション化	296
5	難燃化	296
6	高速伝送化	297
7	高熱伝導化	298
8	易走行性(易滑性)	298
9	ノイズ耐性	
10	耐放電性	300
6.3.6	フレキシブル基板用カバーレイ	
1	カバーレイ用フィルム	
2	カバーレイ用ワニス	305
6.3.7	フレキシブル基板用接着材料	
1	接着剤	
2	その他の接着用材料	317
6.3.8	フレキシブル基板の用途	
1	液晶ディスプレイ	318
	TABテープ、COFテープ	
2	太陽電池	
3	ハードディスクドライブ用サスペンション	
4	宇宙ヨットのソーラーセール	
5	自動車	321
6.4 そ	の他電子回路用基板材料の開発	322
6.4.1	電子回路用基板の種類	323
1	リジッド基板	323
2	高熱伝導·高放熱基板	323
3	高周波通信用基板	323
4	光・電気コンポジット基板	324
5	モジュール基板	324

6.4.2	リジッド基板用材料	324
1	ポリイミド系リジッド基板の特徴	324
2	ポリイミド系リジッド基板の特性の改良	325
3	ポリイミド系ビルドアップ多層電子基板の開発	327
	感光性樹脂材料、樹脂付き銅箔、樹脂フィルム(樹脂シート)	
6.4.3	高放熱基板材料	331
1	光半導体実装用回路基板材料	331
	メタルベース基板、リジッド基板、フレキシブル基板、バインダー	
2	車載用回路基板材料	338
6.4.4	高周波通信用基板材料	
1	低誘電率材料	340
	開発目標値、期待されるポリマー	
2	ポリイミドの低誘電化	
6.4.5	光・電気コンポジット基板材料	
1	光・電気コンポジット基板の必要性	344
	光・電気コンポジット基板の構造、作製方法	
2	光・電気コンポジット基板の材料	346
	光導波路用材料、光・電気コンポジット基板材料	
3	光・電気コンポジット基板の実装	351
	実装製品、改良・開発、関連製品	
6.4.6	モジュール基板材料	
1	半導体パッケージ基板(インターポーザー)	356
	半導体パッケージの動向、基板材料の開発、基板製品の開発	
2	部品内蔵基板	364
	基板メーカーの開発動向、基板用部品の開発動向	
6.5 デ	「ィスプレイ用ポリイミド材料の開発	
6.5.1	液晶ディスプレイ用ポリイミド材料	
1	液晶配向膜の進化	
2	液晶配向膜の改良	
	プレチルト角、視野角、応答速度、残像現象、双安定型LCDの開発	
3	光配向膜の開発	
4	ブラックマトリックスの開発	
6.5.2	有機ELディスプレイ用ポリイミド材料	
1	樹脂の開発	
2	薄膜の開発	
6.5.3	電気泳動ディスプレイ用ポリイミド材料	
1	全印刷有機TFTバックプレーンを用いたディスプレイ	
2	メンブレンスイッチを背面板としたディスプレイ	
6.5.4	その他	
1	ディスプレイ用各種フィルムの開発	
2	ディスプレイ用透明導電膜の開発	
3	ディスプレイ用配向膜の作製方法の開発	385

6.6	光	学用ポリイミド材料の開発	386
6.6.	. 1	光回路	386
	1	光回路の特徴	386
	2	光回路の用途	388
	3	光電気複合FPC	390
6.6.	2	レーザー	391
	1	パルスファイバーレーザー	391
	2	導波路レーザー	392
	3	面発光レーザー	393
6.6.	. 3	光学素子	394
	1	有機・無機ナノハイブリッド材料	394
	2	高屈折率光学素子	396
	3	異方性光学素子	398
	4	有機薄膜発光素子	399
6.6.	. 4	その他の用途	400
	1	光学分割用カラム	400
	2	非線形光学材料	401
	3	X線CCD	402
6.7	分	離膜用ポリイミド材料の開発	403
6.7.	. 1	ポリイミド分離膜の基礎	403
	1	ポリイミドの一次構造と分離膜特性の関係	403
	2	ポリイミドの透過性と分離性	403
	3	ポリイミド分離膜開発上の基礎知識・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	404
6.7.	2	ポリイミド分離膜の改良	405
	1	改良方法	405
	2	変性カルドポリイミド	407
	3	ポリイミドカーボン膜	408
	4	有機・無機ハイブリッド膜	410
6.7.	. 3	ポリイミド分離膜の応用	413
	1	オフガス分離	413
	2	窒素分離・酸素分離(空気)	413
	3	メタン分離	
	4	水分分離	
	5	温室効果ガス分離・酸性ガス分離(燃料ガス)	415
6.8	電	池用ポリイミド材料の開発	416
6.8.	. 1	燃料電池用ポリイミド材料	416
	1	フッ素系電解質膜	416
	2	非フッ素・芳香族系電解質膜	416
		スルホン化、ナフタレン系、イオン液体、ナノファイバー、細孔	
	3	無機・有機ハイブリッド電解質膜	427
	4	触媒用バインダー材料	429
	5	セパレータ用材料	430

6.8	. 2	太陽電池用ポリイミド材料	432
	1	SCAF方式太陽電池	432
	2	テクスチャ構造太陽電池┈┈┈┈┈	433
	3	転写方式太陽電池	434
	4	有機薄膜太陽電池	435
	5	多接合太陽電池	435
	6	太陽電池用バックシート	436
	7	その他の研究開発	436
6.8	. 3	二次電池用ポリイミド材料	438
	1	全有機二次電池	438
	2	コンポジット電極材料	439
	3	リチウムイオン電池用セパレータ	439
	4	フレキシブル薄膜リチウムイオンニ次電池	440
	5	リチウムイオンニ次電池負極用粘着材	440
6.9	白	動車用ポリイミド材料の開発	441
6.9		電動モーター用ポリイミド材料	
	1	高耐熱マグネットワイヤ	441
	2	電磁コイル用巻線	443
	3	- モーター用平角電線被覆フィルム	445
6.9	. 2	パワー半導体用封止材料	446
6.9	. 3	燃料電池用電解質膜	447
6.9	. 4	その他材料	448
	1	自動車エンジンベアリング用潤滑剤	448
	2	ブレーキ用摩擦材料	450
	3	パワーデバイス用放熱材料	451
	4	高耐熱摺動材料	451
	5	構造用硬質発泡材料	451
	6	金属代替材料	452
	7	FPCの電磁スポット溶接	452
6 10	宇	宙・航空用ポリイミド材料の開発	453
6.10		宇宙・航空用に使用されるポリマー	
6.10	. 2	宇宙・航空用のポリイミド系複合材料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	1	NASA(アメリカ国立航空宇宙局)によって開発されたポリイミド	
	2	JAXA(宇宙航空研究開発機構)により開発されたポリイミド	
	3	複合材料用ポリイミドの特性比較	
	4	先進複合材料	
6.10	. 3	宇宙・航空用のポリイミド系フィルム	459
	1	太陽光吸収率が小さな熱制御フィルム	459
	2	原子状酸素に耐えうる熱制御フィルム	
	3	その他宇宙・航空用ポリイミドフィルム	
6 .10	. 4	宇宙・航空用のポリイミド系接着剤	464
6 .10	. 5	その他宇宙・航空用のポリイミド系材料	465
	1	宇宙・航空用発泡材	465
	2	宇宙・航空用電線被覆材	465

6.11 医	療用ポリイミド材料の開発	466
6 .11. 1	ポリイミドの生体適合性	466
1	生体適合性	466
2	含フッ素ポリイミドの生体適合性	466
6 .11 .2	ポリイミドの応用例	467
1	人工筋肉	467
2	人工肺	468
3	人工網膜	468
4	神経内視鏡	469
5	血流センサー	470
6	神経電極	472
6.12 先	進複合材料用ポリイミドの開発	473
6 .12. 1	ナノ粒子分散ポリイミド	473
1	金属系ナノ粒子分散ハイブリッド薄膜	473
2	クレイ系ナノコンポジット	477
3	その他のナノ粒子	479
6 .12. 2	カーボン繊維補強ポリイミド	481
1	宇宙・航空分野への応用	481
2	超臨界水反応装置への応用	485
3	産業用金属代替CFRP用樹脂	485
6 .12. 3	その他の先進複合材料	
1	カーボンブラック分散ポリイミド複合材料	485
2	磁性金属粒子/ポリイミド複合材料	486
6.13 炭	素・黒鉛材料用ポリイミドの開発	487
6 .13. 1	ポリイミドの炭素化・黒鉛化	487
6 .13. 1 1	ポリイミドの炭素化・黒鉛化 黒鉛化反応に影響を及ぼす因子	
		487
1	黒鉛化反応に影響を及ぼす因子	487 488
1 2	黒鉛化反応に影響を及ぼす因子 黒鉛化反応の機構	487 488 488
1 2 3	黒鉛化反応に影響を及ぼす因子黒鉛化反応の機構結晶性グラファイトグラファイトの特徴グラファイトの構造	487 488 488 490 490
1 2 3 6 .13. 2	黒鉛化反応に影響を及ぼす因子 黒鉛化反応の機構 結晶性グラファイト グラファイトの特徴 グラファイトの構造 グラファイトシートの物性	487 488 490 490 490
1 2 3 6 .13. 2 1	黒鉛化反応に影響を及ぼす因子黒鉛化反応の機構結晶性グラファイトグラファイトの特徴グラファイトの構造	487 488 490 490 490
1 2 3 6.13.2 1 2 3	黒鉛化反応に影響を及ぼす因子	487 488 490 490 490 490
1 2 3 6.13.2 1 2	黒鉛化反応に影響を及ぼす因子	487 488 490 490 490 491
1 2 3 6.13.2 1 2 3 6.13.3	黒鉛化反応の機構 結晶性グラファイト グラファイトの特徴 グラファイトの構造 グラファイトシートの物性 炭素化ポリイミドフィルムの電気特性 グラファイトの用途 X線用器材	487 488 490 490 490 491 491
1 2 3 6.13.2 1 2 3 6.13.3 1 2	黒鉛化反応に影響を及ぼす因子 黒鉛化反応の機構 結晶性グラファイト グラファイトの特徴 グラファイトシートの物性 炭素化ポリイミドフィルムの電気特性 グラファイトの用途 X線用器材 熱放散シート	487488490490490491492493
1 2 3 6.13.2 1 2 3 6.13.3 1 2	黒鉛化反応に影響を及ぼす因子 黒鉛化反応の機構 結晶性グラファイト グラファイトの特徴 グラファイトの構造 グラファイトシートの物性 炭素化ポリイミドフィルムの電気特性 グラファイトの用途 X線用器材 熱放散シート 導電性フィルム	487488490490490491491492492493494
1 2 3 6.13.2 1 2 3 6.13.3 1 2 3 4	黒鉛化反応の機構 結晶性グラファイト だラファイトの特徴 グラファイトの構造 グラファイトシートの物性 炭素化ポリイミドフィルムの電気特性 グラファイトの用途 X線用器材 熱放散シート 導電性フィルム 耐摩擦摩耗粒子 耐摩擦摩耗粒子	487488490490491491492492493494
1 2 3 6.13.2 1 2 3 6.13.3 1 2 3 4	黒鉛化反応の機構	487488490490490491492492493494496
1 2 3 6.13.2 1 2 3 6.13.3 1 2 3 4	黒鉛化反応に影響を及ぼす因子黒鉛化反応の機構結晶性グラファイトグラファイトの特徴グラファイトシートの物性炭素化ポリイミドフィルムの電気特性グラファイトの用途X線用器材熱放散シート尊電性フィルム耐摩擦摩耗粒子熱・断熱用ポリイミド材料の開発放熱性ポリイミド材料	487488490490490491492492493494496497
1 2 3 6.13.2 1 2 3 6.13.3 1 2 3 4	黒鉛化反応に影響を及ぼす因子黒鉛化反応の機構結晶性グラファイトグラファイトの特徴グラファイトの構造グラファイトシートの物性炭素化ポリイミドフィルムの電気特性グラファイトの用途X線用器材熱放散シート導電性フィルム耐摩擦摩耗粒子熱・断熱用ポリイミド材料の開発放熱性ポリイミド材料放熱性ポリイミド材料LED用高熱伝導性フレキシブルフィルム	487488490490490491491492492493494496497
1 2 3 6.13.2 1 2 3 6.13.3 1 2 3 4 6.14.1 1 2	黒鉛化反応に影響を及ぼす因子黒鉛化反応の機構結晶性グラファイトグラファイトの特徴グラファイトの構造グラファイトシートの物性炭素化ポリイミドフィルムの電気特性グラファイトの用途X線用器材熱放散シート導電性フィルム耐摩擦摩耗粒子熱・断熱用ポリイミド材料の開発放熱性ポリイミド材料LED用高熱伝導性フレキシブルフィルム自動車用熱可塑性ポリイミド放熱材料	487488488490490491491492492493494496497497498
1 2 3 6.13.2 1 2 3 6.13.3 1 2 3 4 6.14 放 6.14.1 1 2 3	黒鉛化反応に影響を及ぼす因子 黒鉛化反応の機構 結晶性グラファイト グラファイトの特徴 グラファイトの構造 グラファイトシートの物性 炭素化ポリイミドフィルムの電気特性 グラファイトの用途 X線用器材 熱放散シート 導電性フィルム 耐摩擦摩耗粒子 熱・断熱用ポリイミド材料の開発 放熱性ポリイミド材料 LED用高熱伝導性フレキシブルフィルム 自動車用熱可塑性ポリイミド放熱材料 高放熱性電気絶縁性電着塗料	487488490490490491491492492493494496497497498498
1 2 3 6.13.2 1 2 3 6.13.3 1 2 3 4 6.14.1 1 2	黒鉛化反応の機構 結晶性グラファイト グラファイトの特徴 グラファイトの構造 グラファイトシートの物性 炭素化ポリイミドフィルムの電気特性 グラファイトの用途 X線用器材 熱放散シート 導電性フィルム 耐摩擦摩耗粒子 熱・断熱用ポリイミド材料の開発 放熱性ポリイミド材料 LED用高熱伝導性フレキシブルフィルム 自動車用熱可塑性ポリイミド放熱材料 高放熱性電気絶縁性電着塗料 断熱性ポリイミド材料	487488488490490490491492492493494496497497497498498
1 2 3 6.13.2 1 2 3 6.13.3 1 2 3 4 6.14 放 6.14.1 1 2 3	黒鉛化反応に影響を及ぼす因子 黒鉛化反応の機構 結晶性グラファイト グラファイトの特徴 グラファイトの構造 グラファイトシートの物性 炭素化ポリイミドフィルムの電気特性 グラファイトの用途 X線用器材 熱放散シート 導電性フィルム 耐摩擦摩耗粒子 熱・断熱用ポリイミド材料の開発 放熱性ポリイミド材料 LED用高熱伝導性フレキシブルフィルム 自動車用熱可塑性ポリイミド放熱材料 高放熱性電気絶縁性電着塗料	487488490490490491491492492493494496497497497498498499

6.15	有	機トランジスター用ポリイミド材料の開発	501
6 .15.	1	有機トランジスターの特徴	501
	1	有機トランジスターのデバイス構造	501
	2	有機トランジスターの新しいデバイス構造	503
6 .15.	2	有機トランジスター用の材料	504
	1	ポリイミド絶縁膜	504
	2	半導体材料	508
	3	チャネル材料	510
6 .15.	3	有機トランジスターの用途	511
	1	ディスプレイ	511
	2	タッチパネル	513
	3	カテーテル	514
6.16	そ	の他分野用ポリイミド材料の開発	515
6 .16.	1	センサー	515
	1	透湿度計測センサー	515
	2	水分センサー	515
	3	ガスセンサー	516
	4	微圧センサー	516
	5	磁気センサー	517
	6	多点硬化度センサー	517
6 .16.	2	マイクロデバイス	518
	1	化学反応用マイクロ流体デバイス	518
	2	液冷システム用マイクロポンプ	519
	3	フレキシブルなマイクロポンプ	520
	4	磁界駆動型マイクロロボット	521
	5	マイクロマシン用金型	522
6 .16.	3	その他	523
	1	プリンターの定着チューブ	523
	2	RFIDのアンテナ	525
	3	電波吸収体	
	4	水素吸蔵薄膜	527

第7章	ポリイミドの生産状況とポリイミドメーカーの開発状況	529
7.1	ポリイミドの生産状況	529
7.2	ポリイミドメーカーの開発状況	530
	IST、荒川化学工業、宇部興産、宇部日東化成、宇宙航空研究開発機構(JAXA)、エア・ブラウン、NEC、NOK、NTT、エボニック デグサ ジャパン、SKCコーロンPI、大阪府立産業技術総合研究所、カネカ、京セラケミカル、京都工芸繊維大学、京都大学、九州工業大学、クラボウ、グンゼ、甲南大学、SABIC Innovative Plastics、産業技術総合研究所、サンワ化学工業、JNC、JSR、信越化学工業、新日鐵化学、新日本理化、シミズ、スーパーレジン工業、ストラタシス、双日、ソニーCID、ソマール、ダイセル・エボニック、チッソ、DIC、帝人、デュポン、電気化学工業、東京大学、東京工業大学、東北大学、東京化成工業、東亞合成、東洋紡、東レ、東レ・デュポン、名古屋大学、日本化薬、日本メクトロン、ネクザムケミカル、日立化成工業、フジクラ、富士フイルム、富士通研究所、物質・材料研究機構、丸善石油化学、三井化学、三菱ガス化学、明治大学、ユニチカ、横浜国立大学、リンテック	
第8章	結 語	541
8.1	エネルギー問題に揺れた2012年の世界	
8.2	ポリイミドの応用展開(まとめ)	
8.2.		
	1 電動モーター用高耐熱マグネットワイヤー	
	2 パワー半導体用封止材料	542
	3 燃料電池用電解質膜	542
8.2.	2 電池用ポリイミドの開発	543
	1 太陽電池用ポリイミド材料	
	2 二次電池用ポリイミド材料	
8.2.	The state of the s	
	1 液晶ディスプレイ用光配向膜	
	2 有機ELディスプレイ用ポリイミド材料	
	3 電気泳動ディスプレイ用ポリイミド材料	
8.2.		
	1 宇宙・航空用のポリイミド系複合材料	
0 0	2 宇宙・航空用のポリイミド系フィルム5 分離膜用ポリイミドの開発	
8.2.	10.10	
	1 オフガスからの水素分離膜	
	2 オフガスからの灰酸ガス分離膜	
8.2.		
8.3	躍進するポリイミドへの期待	
m <i>b</i> == +		
哈 語 表		549
参考文献		553