電子部品用高分子材料の最新動向V

― 半導体用および電子基板用材料の技術・開発・市場の実態 ―

2011年9月発行

定価104,500円(消費税込み)

住ベリサーチの調査研究レポート

住ベリサーチ株式会社 技術調査部 〒140-0002 品川区東品川2-5-8 天王洲パークサイドビル16F TEL 03-5462-7036 FAX 03-5462-7040

第	1	章	緒		Ϊ	1
第	2	章	半	導体封	↑止用有機高分子材料の最新動向┈┉┉┉┉┉┉┉┉	3
	2	. 1	半	導体用	∃樹脂封止技術の開発動向 ────────────────────	3
		2.1	. 1	樹脂刲	☆止材料の必要特性──────────────────────────────	3
		2.1	. 2	半導体	▲の樹脂封止方法 ────────────────────────────────	4
	2	. 2	半	導体卦	↑止樹脂関連材料の開発動向┈┉┉┉┉┉┉┉┉┉┉	5
		2.2	. 1	固形動	,	5
			1	固形動	す	5
				(1) 卦	す止材料の基本組成	5
				(2)	5性改良の変遷	7
			2	固形封	対止材料組成物の特性の改良・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
				(1) 落	客融粘度の低減	11
				(2) 碍	更化性の向上	13
				(3)	∉存安定性の向上	13
			З	固形封	対止材料の用途別開発状況	15
				(1)而	过半田対応封止材料	17
				(2) 瑻	^最 境対応封止材料	18
				(3)	こ端パッケージ用封止材料	20
				(4) 圧	E縮成形用封止材料	22
		2.2	. 2	液状卦	过止材料	24
			1	液状卦	対止材料の応用分野と材料組成──────────────────	·· 24
				(1) 液	を状封止材料の特徴	. 24
				(2) 液	を状封止材料の組成	. 24
				(3) 液	を状封止材料の開発課題	25
			2	液状卦	対止材料の用途別開発状況⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	28
				(1) T	AB型パッケージ用液状封止材料	28
				(2) W	/B 型パッケージ用液状封止材料	29
				(3) W	/L-CSP 用液状封止材料	30
		2.2	. 3	アンタ	ダーフィル用液状樹脂	31
			1	アンダ	ダーフィル材料の技術課題	31
				(1) 7	~ンダーフィル材料の必要性	31
				(2) 7	~ンダーフィル材料の課題	32
				(3) 7	~ンダーフィル実装プロセスの課題	33
				(4) Ξ	三次元実装を支えるアンダーフィル材料	33
				(5) 液	を状封止材料の各社代表グレード	35
			2	アンタ	ダーフィル材料の特性改良	35
				(1)	記動性の向上	36
				(2) オ	ベイドの低減	37
				(3) 碩	更化性の向上	38

目

次

	3	対応部材別アンダーフィル材料の開発状況	
		 Low-k 膜対応材料	
		(2) 鉛フリー半田対応材料	
		(3) WL-CSP対応材料	
		(4)2次実装対応材料	
		(5) COF対応材料	
	4	タイプ別アンダーフィル材料の開発状況	
		(1)キャピラリーフロータイプ材料	
		(2)プリアプライドタイプ材料	
		(3) リペア可能タイプ材料	
2.2	. 4	封止シート(接着フィルム)	
	1	封止シートシステム	
	2	封止シートの各社開発状況⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	
		(1)日立化成工業の研究	
		(2)京セラケミカルの研究	50
		(3) 日東電工の研究	51
		(4) その他の会社の研究	51
2.3	I	∟ポキシ樹脂封止材料の特性改良に関する研究開発動向	53
2.3	. 1	熱的特性の改良・・・・・・	53
	1	高耐熱化	53
		(1)高耐熱ナフタレン骨格エポキシ樹脂	53
		(2)高耐熱アダマンタン骨格エポキシ樹脂	
		(3) 高耐熱性エポキシ樹脂配合材料	
	2	低熱膨張化	57
		(1)多環芳香族骨格樹脂による低熱膨張化	57
		(2)充填材による低熱膨張化	59
	3	高熱伝導化(高放熱化)	59
		 エポキシ樹脂による高熱伝導化	
		(2) フィラーによる高熱伝導化	
	4	耐半田リフロー材料の開発	
		(1)パナソニック電工の研究	
		(2) 日東電工の研究	
		(3) 住友ベークライトの研究	
		(4)日立化成工業の研究	
	_	(5) 京セラケミカルの研究	
	5	半田代替用高熱伝導ペーストの開発	
2.3	. 2	力学的特性の改良	
	1	局 強 朝 化	
		(1) ソノトセクメントの導入による強靱化	69
	~	(2) エフストマー変性による独勢化	
	2		
		(1) 씮応刀剤による内部応刀の低阀	

	(2) シリコーン化合物による内部応力の低減	··· 74
	(3) 樹脂による内部応力の低減	77
	(4)硬化剤による内部応力の低減	77
	(5)フィラーによる内部応力の低減	78
3	低反り化	79
	 (1) 半導体パッケージの反り発生機構	79
	(2) 半導体封止材料の反り低減方法	80
	(3) 各社の反り低減材料	81
	(4) 樹脂による低反り化	82
	(5)硬化剤による低反り化	84
	(6)添加剤による低反り化	86
2.3.3	電気的特性の改良	89
1	耐湿性の改良	89
	(1) エポキシ樹脂による改良	89
	(2)硬化剤による改良	91
	(3)フィラーによる改良	91
	(4) イオン捕捉剤による改良	91
2	電気絶縁性の改良	92
	(1) 耐マイグレーション性の改良	92
	(2) 電気トリーの改良	93
	(3) 金属フリー化	94
	(4) 耐トラッキング性	96
	 (5) 銅ワイヤの腐食防止 (5) 印マイン 	96
	 (6) 銀ワイヤの腐食防止 ## bb bl のたち 	97
2.3.4	難燃性の改良	98
I	ハロケンノリー難燃剤の開発	98
	 (1) 無燃エホイン樹脂 (2) 離歴エポキシ特時田運収剤 	98
	(2) 無燃エホイン倒加用硬化剤	100
2	白己当业性難燃力に対判の開発	102
2	音に消火に難然到正初料の開発	. 104
0	(1) 住友ベークライトの研究	108
	(1) 日文 (1) 日文 (1) (1) (2) 日文化成工業の研究	100
	(2) 日本に成工本の研究	. 111
	(4)日本化薬の研究	· 112
2.3.5	 密着性の改良 	112
	(1) 住友ベークライトの研究	· 112
	(2)日立化成工業の研究	114
	(3) パナソニック電工の研究	115
	(4) 日東電工の研究	116
	(5)京セラケミカルの研究	117
	(6) その他の会社の研究	118

第3章	光半導体封止用透明高分子材料の最新動向	120
3.1	光半導体用透明封止材料の開発動向	120
3.1	.1 光半導体用透明封止材料の必要特性	120
3.1	. 2 代表的な光半導体用透明封止材料	121
	1 エポキシ樹脂とシリコーン樹脂	121
	2 エポキシ・シリコーンハイブリッド樹脂	122
	3 無機・有機ハイブリッド樹脂	123
3.2	光半導体封止用エポキシ樹脂の開発動向	124
3.2	.1 光半導体封止用エポキシ樹脂の特徴	124
3.2	.2 光半導体封止用エポキシ樹脂の改良	125
	1 耐光(耐熱)性の改良	125
	2 耐光(耐紫外線)性の改良	127
	3 耐衝撃(耐クラック)性の改良	129
	4 耐湿性の改良	132
3.3	光半導体封止用シリコーン樹脂の開発動向	134
3.3	.1 光半導体封止用シリコーン樹脂の特徴	134
3.3	.2 光半導体封止用シリコーン樹脂の改良	135
	1 屈折率の改良	135
	2 耐衝撃(耐クラック)性の改良	137
	3 耐光(耐熱)性の改良	138
	4 耐光(耐紫外線)性の改良	140
	5 接着性の改良	141
	6 耐腐食性の改良	142
	7 成形性の改良	143
3.4	光半導体封止用エポキシ・シリコーンハイブリッド樹脂の開発動向	144
3.4	.1 光半導体封止用エポキシ・シリコーンハイブリッド樹脂の特徴	144
3.4	.2 光半導体封止用エポキシ・シリコーンハイブリッド樹脂の改良	145
	1 接着(密着)性の改良	145
	2 耐衝撃(耐クラック)性の改良	147
	3 耐光(耐熱)性の改良	148
	4 耐光(耐紫外線)性の改良	150
	5 屈折率の改良	151
	6 べたつき性の改良	152
	7 保存安定性の改良	153
3.5	その他の光半導体封止用樹脂の開発動向	154
3.5	.1 光半導体封止用無機・有機ハイブリッド樹脂	154
	1 メタロセン結合を有するハイブリッド樹脂組成物	154
	2 シロキサン結合を有するハイブリッド樹脂組成物	155
	3 金属アルコキシドを有するハイフリッド樹脂組成物	155
3.5	.2 その他の光半導体封止用樹脂	157
	1 光半導体封止用ホリイミド	157
	2	157

	3	光半導体封止用フッ素樹脂・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	4	その他の光半導体封止用樹脂および材料┈┈┈・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
第4章	半	導体チップコーティング用高分子材料の最新動向๛๛๛	
4.1	¥	≤導体チップ表面コーティング材料	
4.1	. 1	半導体チップ表面コーティング技術	
	1	表面コーティング材料の必要性	
	2	表面コーティング材料の使用方法	
	3	表面コーティング用樹脂の種類とその特徴	
4.1	. 2	半導体チップ表面コーティング用ネガ型感光性樹脂の開発┈┉┉┉	
	1	ネガ型感光性ポリイミドの開発	
		(1) ネガ型感光性樹脂の合成方法	
		(2) ネガ型感光性樹脂の諸特性	
	2	ネガ型感光性樹脂の改良・・・・・・	
		 (1) 超厚膜ネガ型感光性ポリイミド	
		(2) 低応力ネガ型感光性ポリイミド	
		(3) 低温硬化ネガ型感光性ポリイミド	
		(4)アルカリ水溶液現像ネガ型感光性ポリイミド	
		(5) 高感度ネガ型感光性ポリイミド	170
		(6) 高解像度ネガ型感光性ポリベンゾオキサゾール	170
	_	(7) 無腐食性ネガ型感光性ポリベンゾオキサゾール	171
4.1	. 3	半導体チッフ表面コーティング用ボジ型感光性樹脂の開発	
	1	ホジ型感光性樹脂の特徴	
	2	ホシ型感光性ホリイミトの開発	
	3	ホン空感尤性ホリイミトの改良 (1) 低熱膨脹快ポジ型成火性ポリノミン	
		(1) 低熱膨張性小ン空感元性小リイミト	172
		(2)	
	Л	(3) 同惑反ホン至惑九日ホッイミー ポジ刑感光性ポリベンゾオキサゾールの閉発	
	- 5	ポジ型感光性ポリベンゾオキサゾールの改良	
	Ŭ	(1) 高感度ポジ型感光性ポリベンゾオキサゾール	
		(2) 高感度、高解像度ポジ型感光性ポリベンゾオキサゾール	
		(3) i 線透過性ポジ型感光性ポリベンゾオキサゾール	
		(4) 高接着性ポジ型感光性ポリベンゾオキサゾール	
		(5)低温硬化ポジ型感光性ポリベンゾオキサゾール	
	6	ポジ型感光性ポリベンゾオキサゾールの製品	
4.2	半	^丝 導体用層間絶縁膜材料	
4.2	. 1	低誘電率層間絶縁膜材料の開発	
	1	低誘電率層間絶縁膜材料の必要性	
	2	低誘電率層間絶縁膜材料の開発方法	
4.2	. 2	低誘電率層間絶縁膜材料用樹脂の開発状況	
	1	ポリイミド系低誘電率層間絶縁膜材料の開発	

	(1) ポーラス化による低誘電率化	
	(2) 脂環式構造の導入による低誘電率化	
	(3) 嵩高い構造の導入による低誘電率化	
	(4) 低極性化による低誘電率化	
	(5)シリコーンの導入による低誘電率化	
	(6)低誘電率材料の混合による低誘電率化	
:	2 ポリベンゾオキサゾール系低誘電率層間絶縁膜材料の開発	
	(1) ポーラス化による低誘電率化	
	(2)フッ素変性による低誘電率化	
	(3) 脂環式構造の導入による低誘電率化	
:	3 その他樹脂系低誘電率層間絶縁膜材料の開発	
	(1)ポリベンゾシクロブテン	
	(2)ポリシラザン	
	(3)ポリフェニレンエーテル	
	(4)ナフタリン	
	(5)ノルボルネン	
	(6) シリコーン	
	(7)ポリアリールエーテルケトン	
	(8)アダマンタン	
	4 低誘電率層間絶縁膜材料の企業別開発状況	
4.3	半導体用再配置配線材料	
4.3.	1 半導体用再配置配線材料の開発	
	1 半導体用再配置配線材料の必要性	
:	2 半導体用再配置配線材料の開発方法	
4.3.3	2 半導体用再配置配線材料用樹脂の開発状況	
	1 半導体用再配置配線材料の樹脂別開発状況	
	 ネガ型感光性エポキシ樹脂	
	(2)ポジ型感光性ポリベンゾオキサゾール	
	(3)ネガ型感光性ポリイミド	
	(4) 感光性フッ素樹脂	
:	2 半導体用再配置配線材料の企業別開発状況	
第5章	その他半導体用高分子材料の最新動向	
5.1	チップマウンティング用ペースト	
5.1.	1 エポキシ樹脂系ペーストの開発	
	1 ペーストの組成と作製方法	
	(1) ペーストの配合組成	
	(2) ペーストの作製方法	
:	2 新規ペーストの開発	
	(1) 高温半田リフロー対応ペースト	
	(2) 高熱伝導ペースト	
	(3) 低応力ペースト	

(4) 印刷法用ペースト	
(5) リフロークラック対応ペースト	
5.1.2 ポリイミド系ペーストの開発	225
1 新規ペーストの開発	
 (1) 低弾性・低反りペースト 	
(2) 高接着・低応力ペースト	
(3) 高接着・低弾性ペースト	
2 LOC 用ペーストの開発 ······	
(1) 高接着ペースト	
(2) 高耐熱ペースト	
(3) 感光性ペースト	
5.1.3 アクリル樹脂系ペーストの開発	
 (1) 速硬化で低応力なペースト 	
(2)高熱伝導半田代替可能ペースト	
(3)鉛フリー半田リフロー対応ペースト	
(4) BGA/CSP 用ペースト	
5.1.4 シリコーン樹脂系ペーストの開発	
 (1) 低応力化ペースト	
(2) 速硬化性ペースト	
5.2 チップマウンティング用フィルム	
5.2.1 DAF フィルムの開発······	
1 エポキシ/ポリイミド系 DAF フィルム ······	
2 エポキシ/アクリル系 DAF フィルム ······	
5.2.2 LOC テープの開発······	
5.2.3 その他の接着テープの開発	
5.3 ダイシング用テープ	
5 . 3 . 1 ダイシングテープ (DC) の開発 ······	
5.3.2 ダイシング・ダイボンディングー体型フィルム(DDF)の開発············	
5.4 バックグラインド用テープ(BG)の開発	
第6章 電子回路用基板材料の最新動向	
6.1 電子回路用基板の種類	
(1) リジッド基板	
(2)フレキシブル基板	
(3) 高熱伝導・高放熱基板	
(4) 高周波通信用基板	
(5)光・電気コンポジット基板	
(6)モジュール基板	
(7)特殊銅張積層板	
6.2 リジッド基板用材料	
6.2.1 リジッド基板用材料の種類とその特徴	
(1)フェノール樹脂基板	

	(2) エポキシ樹脂基板	
	(3)ポリイミド基板	
	(4) シアネート樹脂基板	
	(5)ポリフェニレンエーテル基板	
	(6)フッ素樹脂基板	
	(7)ベンゾシクロブテン樹脂基板	
	(8)液晶ポリマー基板	
6.2.2	リジッド基板用材料の特性の改良	
1	低誘電率、低誘電正接材料の開発	
2	高耐熱性材料の開発	
	(1)ナフタレン骨格エポキシ樹脂	
	(2)ビフェニル骨格エポキシ樹脂	
	(3) テトラキスフェノールエタン骨格エポキシ樹脂	
	(4)アダマンタン骨格エポキシ樹脂	
	(5)マレイミド化合物配合エポキシ樹脂組成物	
	(6)ビスマレイミドトリアジン樹脂	
	(7)アミノトリアジンノボラック樹脂	
	(8)シアネート樹脂	
	(9) シリコーン樹脂	
3	低熱膨張性材料の開発	
	 (1) 低熱膨張基板の必要性	
	(2)住友ベークライトの研究	
	(3)パナソニック電工の研究	
	(4) ADEKA の研究	
	(5)利昌工業の研究	
	(6) 新神戸電機の研究	
	(7)日立化成工業の研究	
4	ハロゲンフリー難燃材料の開発	
	(1) 環境対応難燃剤の必要性とその現状	
	(2)ハロゲンフリー難燃エポキシ樹脂	
	(3) ハロゲンフリー難燃エポキシ樹脂用硬化剤	
	(4) 自己消火性難燃材料	
	(5) 環境対応型プリント配線板の開発状況	
5	回路微細化用材料の開発	
6	耐衝撃性基板材料の開発	
6.2.3	ビルドアップ多層電子基板	
1	ビルドアップ多層電子基板の特徴	
	(1) ビルドアップ方式による多層電子基板の製造	
	(2) ビルドアップ多層電子基板の特徴	
2	コア付きビルドアッフ基板の作製方法	
	(1) 感光性樹脂・フォトプロセス	
	(2) 熱硬化性樹脂・レーサーブロセス	

	3	コアレスビルドアップ基板の作製方法	
		(1) ALIVH	
		(2) B ² it	
	4	ビルドアップ多層電子基板材料の開発	
		(1) 感光性樹脂材料	
		(2)非感光性樹脂材料	
		(3) 樹脂付き銅箔	
		(4)樹脂フィルム(樹脂シート)	
		(5)ビルドアップ多層電子基板の各社製品	
6.3	7	フレキシブル基板用材料	
6.3.	. 1	フレキシブル基板用フィルム材料	
	1	ポリイミド (PI) フィルム	
	2	液晶ポリマー (LCP) フィルム	
	З	ポリエチレンナフタレート (PEN) フィルム	
	4	ポリエチレンテレフタレート (PET) フィルム	309
	5	ポリアミドイミドフィルム	
	6	ポリアミドフィルム	
6.3.	2	二層(接着剤レス)フレキシブル基板の開発	
	1	ニ層フレキシブル銅張板の製造方法	
		(1)キャスティング法	
		(2) ラミネート法	
		(3)メタライジング法	
	2	ニ層フレキシブル回路基板の作製方法	
		(1)化学的表面処理後のダイレクトパターニング	
		(2) 導電性インクによる微細配線の形成	
		(3)銀ナノパーティクルからなる導電性インク	
		(4)銅ナノパーティクルからなる導電性インク	
		(5)金ナノパーティクルからなる導電性インク	
		(6)その他の導電性インク	
		(7)その他の方法による微細配線の形成	
	3	TAB 用フレキと COF 用フレキの開発 ······	
		 TAB 用と COF 用のフレキシブル銅張積層板	
		(2) TAB 用フィルム	
		(3) COF 用フィルム	
6.3.	. 3	その他のフレキシブル基板の開発	
	1	多層フレキシブル基板	
		(1)オールポリイミド多層 IC パッケージ基板	
		(2) 全層ボリイミドー 括積層 IVH フレキシブル多層基板	
		(3) 新規層間接続技術を用いた多層フレキシブル基板 "SBic"	
		(4) 高密度薄型多層フレキシブル基板	
		(5) 極薄多層フレキシブル基板	
		(6)液晶ポリマー製高密度多層フレキシブル基板	

	2 そ	の他のフレキシブルプリント配線板	· 340
	(1) リジッドフレキシブルプリント配線板	· 340
	(2)キャパシター内蔵フレキシブルプリント配線板	· 340
	(3) 全透明フレキシブルプリント配線板	341
	(4) 立体形状フレキシブルプリント配線板	341
	(5)長尺フレキシブルプリント配線板	343
	(6)大電流用厚銅フレキシブルプリント配線板	· 343
6.3	.4 フ	レキシブル基板の特性の改良	· 343
	1 高	密着化······	· 343
	(1) セットメーカーからの要求特性	· 343
	(2) 改良研究	344
	2 寸	·法安定化	344
	3 高	位置精度化	· 345
	4 高	〕精細化······	· 346
	(1) 日本メクトロンの研究	346
	(2)その他の会社の研究	348
	5 高	;耐折化	· 349
	6 耐	マイグレーション化	351
	7 耐	ブリスター化	353
	8 難		· 354
	9 高	j速伝送化	355
	10 高	∴熱伝導化 ······	356
	11 易	,走行性(易滑性)	356
6.3	.5 フ	レキシブル基板用カバーレイの開発	356
	1 カ	バーレイ用フィルム	356
	(1)日立化成工業の研究	. 357
	(2) 三井化学の研究	. 359
	(3) カネカの研究	· 360
	(4)東レ・デュポンの研究	· 363
	(5) 住友ベークライトの研究	· 363
	(6)ナミックスの研究	· 365
	(7)京セラケミカルの研究	· 365
	()		
	(8)) 信越化学工業の研究	· 366
	(8)) 信越化学工業の研究) 東洋紡績の研究 	· 366 · 367
	(8 (9 (10) 信越化学工業の研究	· 366 · 367 · 367
	(8 (9 (10 2 л)信越化学工業の研究	· 366 · 367 · 367 · 368
	(8 (9 (10 2 カ (1) 信越化学工業の研究	· 366 · 367 · 367 · 368 · 368
	(8 (9 (10 2) (1 (2) 信越化学工業の研究	· 366 · 367 · 367 · 368 · 368 · 368 · 369
	(8 (9 (10 2 力 (1 (2 (3) 信越化学工業の研究	· 366 · 367 · 367 · 368 · 368 · 368 · 369 · 369
	(8 (9 (10 2 力 (1 (2 (3 (4) 信越化学工業の研究	· 366 · 367 · 367 · 368 · 368 · 368 · 369 · 369 · 369
	(8 (9 (10 2 7 (1) (2 (3) (4 (5))信越化学工業の研究)東洋紡績の研究)新日鐵化学の研究 バーレイ用ワニス)ソニーCID の研究)DIC の研究)DIC の研究) 次日の研究	· 366 · 367 · 367 · 368 · 368 · 368 · 369 · 369 · 369 · 369 · 373

	(7)日立化成工業の研究	
6.3.6	フレ	[,] キシブル基板用接着剤/接着テープの開発	
	(1) 新日鐵化学の研究	
	(2) 日東電工の研究	
	(3) リンテックの研究	
	(4)利昌工業の研究	
	(5)DIC の研究	
	(6) 三井化学の研究	
	(7) 荒川化学工業の研究	
	(8)JSR の研究	
	(9) 東亞合成の研究	
	(10) 味の素の研究	
	(11) 東洋インキ製造の研究	
	(12) 日立化成工業の研究	
6.3.7	フレ	[,] キシブル基板の新規な用途	
	1	太陽電池	
	2	ハードディスクドライブ用サスペンション	
	З	宇宙ヨットのソーラーセール	
	4	車載用配線基板	
第 7 章	高加	ጲ熱基板材料の最新動向──────────────────────	
7.1	高	熱伝導化(高放熱化)	
7.1	. 1	高熱伝導化(高放熱化)の必要性とその対策	
	1	高熱伝導化(高放熱化)の必要性	
	2	高熱伝導化 (高放熱化)の理論	
	(1) 熱伝導	
	(2) 熱伝達(対流熱伝達)	
	(3) 放熱熱伝達	
	3	高熱伝導化(高放熱化)の対策	
7.1	. 2	高熱伝導化(高放熱化)の方法	
	1	フィラー高充填による高熱伝導化(高放熱化)	
	(1) 無機フィラーによる高熱伝導化	
	(2) 銀ナノ粒子担持フィラーによる高熱伝導化	
	(3) 微小球状 AlN 粒子による高熱伝導化	
	(4) リン片状 BN フィラーによる高熱伝導化	
	(5) 微小アルミナ粒子高充填による高熱伝導化	
	(6) 無機フィラーの電場配向による高熱伝導化	
	(7) 界面活性剤処理充填材による高熱伝導化	
	2	樹脂による高熱伝導化(高放熱化)	
	(1) エポキシ樹脂の熱伝導の原理	
	(2) モノメソゲン型樹脂による高熱伝導化	
	(3) ツインメソゲン型樹脂による高熱伝導化	

(4)メソゲン型樹脂のコンポジット化による高熱伝導化	
(5)液晶性エポキシ樹脂の磁場配向による高熱伝導化	
(6)液晶ポリマーによる高熱伝導化	
3 メタルベース・メタルコアによる高熱伝導化(高放熱化)	
(1) 放熱基板のビアホールの改良	
(2)放熱基板の耐クラック性の向上	
(3)放熱基板に金属ブロックを積層しさらに高放熱化	
(4)銅ベースに直結したバンプによる高放熱化	
(5)放熱基板の回路の剥離防止方法	
(6)ポリアリーレンスルフィドからなる放熱基板	
(7) 放熱基板の熱応力による歪みの改良	
(8)放熱基板の耐マイグレーション性の向上	
(9) 安価な構造の放熱基板	
4 カーボン/グラファイト系材料による高熱伝導化 (高放熱化)	
(1)カーボン繊維コアによる高放熱基板	
(2)カーボングラファイトシートによる高放熱基板	
(3) ピツチ系炭素繊維による高放熱化	
(4) 黒鉛と金属の複合化による高放熱化	
(5)シート状黒鉛層による高放熱化	
7.1.3 回路基板材料の高熱伝導化(高放熱化)	
1 半導体実装用高熱伝導化(高放熱化)基板	
(1)高熱伝導化(高放熱化)方法の課題	
(2)各社の高熱伝導化(高放熱化)基板の開発	
2 その他の回路基板用高熱伝導化 (高放熱化)材料	
(1) 回路基板用高熱伝導ペースト	
(2) 回路基板用高熱伝導性塗料	
(3)回路基板用高熱伝導性シート	
7.2光半導体実装用回路基板材料の最新動向	
7.2.1 光半導体実装用回路基板材料の開発動向	
1 光半導体実装用回路基板材料の必要特性	
2 代表的な光半導体実装用回路基板	
 (1) エポキシ樹脂系基板	
(2)シリコーン樹脂系基板	
(3) トリアジン樹脂系基板	
(4)液晶ボリマー系基板	
(5) ポリイミド系基板	
3 代表的な光半導体実装用高放熱性基板	
7.2.2 光半導体実装用回路基板材料の改良研究	
1 光半導体実装用メタルベース基板材料の改良研究	
(1) 放熱性の改良	
(2) 光反射性の改良	
(3) その他の特性の改良	

	2 光半導体実装用リジッド基板材料の改良研究	
	(1) 熱伝導性の改良	
	(2) 光反射率の改良	
	3 光半導体実装用フレキシブル基板材料の改良研究	
	(1) 耐熱性、耐光性の改良	
	(2)放熱性、絶縁性の改良	
	(3) 反射率の改良	
	4 光半導体実装基板用ソルダーレジスト材料の改良研究	
	(1) HAST 耐性の改良	
	(2) 光反射率の改良	
	(3) 放熱性の改良	
	5 その他の光半導体実装用材料の改良研究	
	(1)LED チップ搭載用バインダー材料	
	(2)LED チップ放熱用塗布液材料	
	(3)LED チップ被覆用フィルム材料	
	(4)LED 放熱基板製作用接着シート材料	
	(5) LED 照明用の光反射材料	
7.3車	■載用回路基板材料の最新動向	
7.3	1 車載用回路基板材料の開発動向	
	1 自動車のエレクトロニクス化の進歩	
	2 車載用回路基板材料の必要特性	
7.3	2 車載用回路基板材料の改良研究	
	1 大電流対応基板の開発	
	2 低熱膨張基板の開発	
	3 セラミック代替基板の開発	
第8章	高周波通信用基板材料の最新動向	
8.1	低誘電率材料	
8.1	1 低誘電率基板材料の必要性	
	1 電気信号の伝播速度の向上	
	2 伝送損失の低減	
	3 特性インビーダンスの制御	
8.1	2 低誘電率基板材料の開発方法····································	
	 分極率の小さな原子(団)の導入 	
	 届 折率の小さな基の導入 	
	3 低極性化または非極性化 ····································	
	4 高い構造の導入 	
	5 整列しにくい構造の導入	
	 分極し易い不純物の低減 	
	7 吸水率の低減	
8.1	3 低誘電率基板用材料の開発····································	
	1 低誘電率基板用材料の開発目標値	

	2	低誘電性基板用材料として期待されるポリマー	
8.2	ポ	リマー別低誘電性材料の開発の現状	
8.2.	. 1	エポキシ樹脂の低誘電化の研究	
	1	低極性化 (水酸基低減)による低誘電化	
	2	低分極化 (嵩高構造) による低誘電化	
	3	ポリフェニレンエーテル変性による低誘電化	
	4	シアネート変性系による低誘電化	
	5	その他の低誘電性樹脂変性による低誘電化	
	6	硬化剤による低誘電化	
	7	充填材および基材による低誘電化	
	8	高速通信用基板の開発状況	
8.2.	2	ポリイミドの低誘電化の研究	
	1	ポーラス化による低誘電化	
	2	脂環式構造による低誘電化	
	3	嵩高い構造による低誘電化	
	4	低極性化による低誘電化	
	5	フッ素変性による低誘電化	
	6	シロキサン基の導入による低誘電化	
	7	シアネート基の導入による低誘電化	
	8	ブタジエン変性による低誘電化	
	9	無機との複合による低誘電化	
8.2.	3	ポリベンゾオキサゾールの低誘電化の研究	
	1	ポーラス化による低誘電化	
	2	フッ素変性による低誘電化	
	3	脂環式構造による低誘電化	
8.2.	. 4	ポリエステルの低誘電化の研究	
	1	液晶ポリマー	
	2	その他のポリエステル	
8.2.	5	ポリオレフィンの低誘電化の研究	
	1	シクロオレフィンポリマー(ノルボルネン関連ポリマー)	
	2	α-オレフィン共重合体	
8.2.	6	その他のポリマーの低誘電化の研究	
	1	ポリベンゾシクロブテン	
	2	ポリアリーレンエーテル	
	3	フッ素樹脂	
	4	ポリキノリン	
	5	シアネート樹脂	
	6	ポリフェニレンエーテル	
	7	ポリスチレン	
	8	ポリビニルベンジルエーテル	
	9	アセナフチレンポリマー	
	10	その他の芳香族ポリマー	

第9章	光・電気コンポジット基板材料の最新動向	
9.1	光・電気コンポジット基板の必要性	
9.1	.1 光・電気コンポジット基板の必要性	
9.1	.2 光・電気コンポジット基板の構造	
9.1	.3 光・電気コンポジット基板の作製方法	
	1 光導波路の各種作製方法	
	2 POF と接続可能な大口径高分子光導波路の作製方法·········	
	3 自己形成光導波路の作製方法	
9.2	光・電気コンポジット基板の材料	
9.2	1.1 光導波路用材料	506
	1 代表的な光導波路材料	
	2 アクリル樹脂系光導波路材料	
	3 エポキシ樹脂系光導波路材料	
	4 ポリイミド系光導波路材料	
	 NTTの研究 	
	(2)新日本理化の研究	
	5 ノルボルネン樹脂系光導波路材料	
	6 有機・無機ナノハイブリッド材料	
9.2	2.2 光・電気コンポジット基板材料	
	1 基板材料の種類	
	2 シングルモード低熱膨張ポリイミド光導波路フィルム	
	3 配線板レベル光伝送用ポリイミド光導波路フィルム	
	4 3波長分割多重伝送用ポリイミド光導波路基板	
	5 エポキシ樹脂系フレキシブル光導波路基板	
	6 エポキシ樹脂系リジッド光導波路基板	
	7 O/E (光/電気)基板用光導波路フィルム······	
9.3	光・電気コンポジット基板の実装	
9.3	3.1 実装製品	
	1 O/E リジッド基板と O/E フレキシブル基板 ·······	
	2 光素子保護機構付き光電気混載基板	
	3 光入出力 BGA パッケージ	
	4 光送受信モジュール	
	5 ポリマー光導波路用コネクター	
	6 90 度光路変換素子······	
	7 多層光導波路基板	
9.3	3.2 実装用材料の改良・開発	
	1 屈折率の改良	
	2 耐烈性の改良	
	3 ス型光配線材の開発	
	4 局速、大容量伝送光導波路の開発	
	5 天屈折率差 (コア/クラッド) 光導波路の開発	
	6 光損失が少ない光電気複合基板の製造方法	

	7	薄くかつ耐屈曲性に優れた光電複合フレキシブル配線板	
	9.3.3	関連製品······	
	1	光導波路型波長合分波器	
	2	波長合分波器フィルタ	
	3	光電気混載基板と光素子との光結合器	
	4	一軸延伸含フッ素ポリイミド薄膜偏光子	
	5	銀ナノ粒子を用いたフレキシブル偏光板	
	6	カーボンナノチューブを分散した非線形光学素子	
	7	光部品用接着剤	
第 1	0 章 モ	∃ジュール基板材料の最新動向	
1	10.1 늭	半導体パッケージ基板(インターポーザー)	
	10.1.1	半導体パッケージの動向	
	1	半導体パッケージの進歩	
	2	ウェハレベルパッケージ(WLP)への進歩 ·····	
	3	スタックド CSP から SiP への進歩	
	4	シリコン貫通孔 (TSV) 技術の進歩	
	10.1.2	半導体パッケージ基板の動向	
	1	半導体パッケージ基板の必要性	
	2	日本実装技術ロードマップ (JJTR)の予測······	
	3	パッケージ基板の生産の現況	
	10.1.3	インターポーザー用基板材料の開発	
	1	日立化成工業の研究	
	2	住友ベークライトの研究・・・・・	
	3	パナソニック電工の研究・・・・・	
	4	三菱ガス化学の研究	
	5	三井化学の研究	553
	6	荒川化学工業の研究	553
	7	産業技術総合研究所の研究・・・・・	553
	8	東洋紡績の研究	554
	9	古河電気工業の研究	
	10.1.4	インターポーザー用基板製品の開発	555
	1	日本電気の研究	555
	2	凸版印刷の研究	556
	3	産業技術総合研究所の研究・・・・・	556
	4	デンソーの研究	558
	5	富士通インターコネクトテクノロジーズの研究・・・・・	
	6	イビデンの研究	559
	7	新藤電子工業の研究	559
	8	日本シイエムケイの研究	559
	9	新光電気工業の研究	
	10	利昌工業の研究・・・・・・	

10.2 音	『品内蔵基板	
10.2.1	部品内蔵基板の特徴とその課題	
1	部品内蔵基板の特徴	
2	部品内蔵基板の課題	
10.2.2	部品内蔵基板の開発動向	
1	コンソーシアム	
2	特許出願動向	
10.2.3	部品内蔵基板メーカーの開発動向	
1	日本シイエムケイの研究	
2	大日本印刷 (DNP) の研究	
3	TNCSi の研究	
4	太陽誘電の研究・・・・・・	
5	フジクラの研究	
6	沖プリンテッドサーキットの研究	
7	沖電気の研究	
8	TDK の研究	
9	デンソーの研究	
10	新光電気工業の研究	
11	日立化成工業の研究	
12	パナソニック電工の研究	
13	パナソニックエレクトロニックデバイスの研究・・・・・・	
14	ルネサスエレクトロニクスの研究	
15	村田製作所の研究・・・・・・	
16	東芝の研究	
17	ウェイスティ社の研究	
18	日東電工の研究・・・・・・	
19	三井金属鉱業の研究	
20	日本特殊陶業の研究	
21	ソニーの研究	580
10.2.4	部品内蔵基板用部品の開発動向	
1	キャパシター	580
	(1) 無機系キャパシター	580
	(2)有機系キャパシター	
	(3)その他のキャパシター	
2	抵抗体······	
	(1) フィルム状抵抗体	583
	(2)抵抗ペースト	
	(3) その他抵抗体	
3	インダクター	
4	封止用シート材料	

第	11 章	結語58	87
	11.1	半導体封止材料関連分野の動向	87
	11.1.	1 市場動向	87
	11.1.	2 開発動向のまとめ	88
	11. 2	電子回路基板関連分野の動向	89
	11.2.	1 市場動向	89
		1 回路基板58	89
		2 積層基板 59	90
	11.2.	 2 開発動向のまとめ 55 	91
	11.3	おわりに	92
略	語 表	59	93
参	考文献	÷5!	96