特許に見るインクジェット

一 可能性から現実のものへ 工業用途が見えてくる —

2011年5月発行

定価55,000円 (消費税込み)

住ベリサーチの調査研究レポート

住ベリサーチ株式会社 技術調査部 〒140-0002 品川区東品川2-5-8 天王洲パークサイドビル16F TEL 03-5462-7051 FAX 03-5462-7040

目 次

はじめに		1
第1章 叵]路、電極、配線(導電層の形成)	11
1.1 導	享電機能のためのインク	11
1.1.1	金水系分散液	
	ナノ微粒子	
1	銀微粒子	
2	銅微粒子	12
3	金属繊維	13
4	樹脂周囲に金属を有する導電性複合粒子	13
5	ナノ粒子ペースト	14
6	磨滅防止促進ナノ粒子を含む金属インク	14
7	銅インク	15
8	ニッケルインク	16
1.1.3	ITO インク	17
1.1.4	透明導電性酸化スズ膜	18
1.1.5	金属コロイド	19
1	金コロイド	21
2	銀コロイド	21
3	保護剤を過剰に含まない金属コロイド	23
1.1.6	金属前駆体と金属ナノ粒子の混合インク	24
1.1.7	触媒の印刷	24
1	無電解メッキ触媒・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
2	メッキ用シードパターン	25
3		
4		
1.1.8		
1	みかけ比重の低減	
2		
3		
4	1 . 5 E . Chall . A Garage.	
1.1.9		
1.1 10	滲みを抑制したインク	30

1.1.11	接着強度の向上	30
1.1.12	回路の寸法安定性向上	32
1.1.13	着弾位置精度の向上	32
1.1.14	エレクトロマイグレーションの防止	33
1 . 1 .15	弾性を有する CNT コンタクト	34
1.1.16	超電導回路	35
1.1.17	布地用電子パターンインク	35
1.2 🗓]路形成プロセス	36
1.2.1	回路描画のための前処理┈┈┈┈	36
1	犠 牲 層	36
2	感光性材料によるバンク形成	36
3	溶媒の噴霧	37
4	エッチング	37
5	インプリント	37
6	撥液パターン	38
7	インク受容層	42
8	光触媒の利用	47
1.2.2	インクジェットによる前処理	49
1	界面活性剤によるパターニング	49
2	ケイ素含有重合体の塗布・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	49
3	アルカリ金属化合物による表面処理	50
4	エッチング液の塗布	50
5	光触媒の形成	50
6	撥液パターンの形成・転写 ····································	51
7	エネルギー線照射による触媒金属の析出	52
8	後に剥離する電解メッキ用導電パターンの形成	52
1.2.3	2 液順次形成	53
1.2.4	基板上で2液混合	54
1.2.5	配線パターンのにじみ防止	55
1.2.6	バルジ形成防止	56
1.2.7	インクジェット塗布環境	57
1.2.8	後 処 理	58
1	熱・圧力の付与	58
2	減圧焼成	59
3	誘導加熱	59

	4	レーザー焼成······	59
	5	湿熱処理	60
	6	形成した回路の転写・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61
	7	全面塗布後パターニング	62
1.2	. 9	インクジェットによる後処理	62
1.2	.10	磁性の利用	62
1.2	.11	側面回路配線	63
1.2	.12	静電方式インクジェット装置	65
1.2	.13	インクジェット法の応用事例	67
	1	ビアホールの形成	67
	2	多層基板の製造	69
	3	実装後の回路パターン形成	71
	4	半導体の再配線	71
	5	チップ部品の導電接着層形成	71
	6	配線の修正	72
	7	電子放出層	74
第2章	半	導体機能層の形成	79
2.1		<u> </u>	79
2.1	. 1	シリコン半導体	79
2.1	. 2	金属酸化物半導体	
2.1	. 3	化合物半導体	80
2.1	. 4	有機半導体	81
	1	イオン液体の添加	81
	2	分子量の調整	82
	3	共役系化合物	82
	4	n 型半導体	83
	5	添加物	84
	6	溶媒の工夫	85
		(1) ハロゲン含有芳香族化合物溶媒	87
		(2) 圧縮二酸化炭素を含む溶媒相	87
	7	溶融インク	88
2.1	. 5	薄層化学トランジスタ	88
2.2	_	² 導体プロセス	
2.2	. 1	インクジェット法による半導体層の形成	89

1	シリコン膜の形成	90
2	CVD 原料の噴霧	90
3	酸化亜鉛半導体	90
4	有機半導体溶液の滴下	92
5	有機半導体チャンネル領域の形成	92
6	カーボンナノチューブ	92
7	完全インクジェット付加	93
2.2.2	離散的領域を有する有機半導体┈┈┈┈	94
2.2.3	円柱状注入物質を有する電界効果トランジスタ	95
2.2.4	円周形状の電極を持つ有機薄膜トランジスタ	96
2.2.5	PIN 型太陽電池	97
2.2.6	半導体装置各層の形成	97
1	シリコン絶縁膜の形成	97
2	光反応電荷誘起層の形成	97
3	バッファー層の形成	98
2.2.7	半導体形成のための前処理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98
1	インク受容領域の形成	98
2	リフトオフ法との組み合わせ	99
3	リソグラフィとの併用	101
4	ソフトコンタクトプリントによるパターン化	101
5	3 次元モールドによる多段凹凸形状の形成	102
6	黒色バンク層の使用	103
7	平坦化層の形成	103
8	電極の自発的分離	104
2.2.8	インクジェットのための構造的工夫	105
1	インク案内部を有するチャンネル開口部	105
2	コーヒーステイン対策	106
2.2.9	インクジェットによる後処理	107
1	溶媒塗布	107
2	結合剤の塗布	107
3	ドーパント液の塗布	108
4	ウェハ表面平坦化	109
2.2.10	半導体への機能追加	109
1	マイグレーション防止導電皮膜層の形成	109
2	キャパシタ成分の形成	110
3	インダクタンス成分の調整	111

4	ヒートシンクの付与	111
2.2.11	半導体形成に用いられる装置	111
1	マルチノズル型の液体噴射ヘッド	111
2	静電堆積	113
第3章 レ	ジスト・絶縁材料の塗布	114
3.1 イ	ンクジェットに適したレジストインク	114
3.2 プ	プロセス	117
3.2.1	パターニング	117
3.2.2	裏面露光······	119
3.2.3	コネクター端子のメッキ	121
3.2.4	遮光性顔料インクによるマスキング	121
3.2.5	犠牲層の形成	122
3.2.6	半透過反射膜の製造	122
3.2.7	弾性表面波素子片の製造	123
3.2.8	太陽電池基板の加工	124
3.2.9	スピント型電界放出素子のホール形成	124
3.2.10	バンプ付き回路配線板	124
3.2.11	ビアホール内塗布	125
3.2.12	複数パターンの組み合わせ	126
3.2.13	階調マスク	126
3.2.14	重合開始剤を含む下地活性層の形成	126
3.2.15	レジストと導電層をインクジェットで形成	127
3.2.16	バンクとレジストをインクジェットで形成	127
3.2.17	レーザープロセスとの組み合わせ	128
3.2.18	透明材料のレーザーエッチング	129
3.2.19	レーザーによる後加工	130
3.2.20	カバープレート付プリントヘッド	130
第4章 受	動素子の形成	131
4.1 受	動素子用インク	131
4.1.1	抵抗体の形成	131
4.1.2	キャパシタ、高誘電率層の形成	131
4.1.3	磁気インク	132

4.2	プ	ロセス	133
4.2	. 1	キャパシタ形成	133
4.2	. 2	メモリー素子の形成	135
4.2	. 3	アンテナ形成	135
4.2	. 4	磁性材料の堆積促進	··· 136
第5章	光	学機能層の形成	137
5.1	イ	ン ク	137
5.1	. 1	光学フィルタ・カラーフィルタ	137
	1	カラーフィルタ用色素材料	137
	2	顔料と染料の併用	148
	3	ワックスビードインク	148
	4	高濃度顔料インク	149
	5	溶媒・分散液の工夫	152
	6	界面活性剤	160
		(1) フッ素系界面活性剤	160
		(2) シリコーン系界面活性剤	··· 161
	7	バインダーの工夫	162
	8	白色部、保護膜の形成インク・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	170
	9	ブラックマトリクス (BM) 用インク	171
5.1	. 2	液晶スペーサー用インク	171
	1	液晶スペーサー分散液	171
	2	スペーサー形成インク	175
5.1	. 3	配向材料	176
5.1	. 4	発光素子······	179
5.1	. 5	レンズ形成材料	187
5.1	. 6	電気泳動粒子組成物	188
5.2	プ	ロセス	189
5.2	. 1	カラーフィルタ・光学フィルタ	189
	1	インクの製造	189
	2	2 段階吐出	189
	3	電磁気による制御	190
	4	転 写	191
	5	光学フィルタ	192

5.2.2	ブラックマトリクス (BM) 、スペーサー、隔壁	194
1	BM の形成	194
2	BM 基板撥液層の形成	196
3	ビーズスペーサーの塗布	197
4	ビーズスペーサーにより高さを規定した柱状スペーサー	200
5	スペーサーパターンの非線形配置	202
5.2.3	カラーフィルタの修正	202
5.2.4	配向膜の形成	204
5.2.5	位相差膜・光学補償膜の形成	205
5.2.6	液晶の塗布	209
5.2.7	反射・光拡散層・配光パターン	213
1	反射層	213
2	光拡散層	215
3	防眩性フィルム	215
4	配光パターン	216
5	光閉じ込め効果	217
5.2.8	偏光板・保護フィルム	217
5.2.9	マイクロレンズ、光学部材	218
5.2.10	発光素子	221
5.2.11	電子ペーパー	228
5.2.12	光導波路、光ファイバー	230
1	光導波路の形成	230
2	光ファイバーの接続	231
5.2.13	スクリーン	232
5.2.14	エンコーダ	234
第6章 封	止層・接着層の形成	235
6.1 <i>1</i>	′ンク	235
6.1.1	両末端に反応性基を有する結晶性樹脂インク	235
6.1.2	ポリイミド膜形成用インク	235
6.1.3	難燃性インク	237
6.1.4	タッチスクリーン保護膜用インク	238
6.1.5	耐熱性樹脂ペースト	238
6.2	プロセス	239
6.2.1	封 止	239

	6.2.2	カバーレイ	240
	6.2.3	パッシベーション膜	240
	6.2.4	ダイボンディング	241
	6.2.5	平滑性向上	241
	6.2.6	欠陥修復	241
	6.2.7	外部接続端子部の絶縁	242
	6.2.8	接着剤の塗布	242
	6.2.9	偏光板用粘着層	243
	6.2.10	バンプ形成	244
	6.2.11	部品内蔵基板の製造	245
	6.2.12	微調整塗布	245
<i>t</i> -t	- -		
第 /	/ 草 て	の他	248
7	7 . 1 基	板のマーキング	248
7	7 . 2 溶	媒の除去制御	249
7	7.3 電	気的特性の補修	249
7	7.4 イ	ンクジェットによる流動を利用する装置	250
	7.4.1	洗 净	250
	7.4.2	冷 却	250
	7.4.3	燃料吐出	251
	7.4.4	インクジェット機構を用いた表示装置	251
	7.4.5	臭気発生装置	252
7	7.5 燃	料電池用部材	253
	7.5.1	電極・触媒	253
	7.5.2	高分子固体電解質膜	254
	7.5.3	セパレータ	255
7	7.6 =	次電池用部材	255
	7.6.1	活物質	255
	7.6.2	高分子電解質	256
	7.6.3	セパレータ	257
	7.6.4	集 電 体	257
	7.6.5	電 極	258

	7.7 カ	ĭス感応膜	259
	7.8 分	↑析装置への応用	259
		質量分析	
	7.8.2	マイクロ化学チップ	259
	7.9 먼	上出装置全般	·· 260
	7.9.1	粘度に応じた吐出	·· 260
	7.9.2	ドラム型インクジェット成膜装置	. 261
	7.9.3	複数の波形駆動パルスによる吐出	. 262
	7.9.4	インクジェットヘッドのつまり再生	·· 262
お	わりに		. 263