進化する薄膜の最新技術と エレクトロニクスにおける応用

— 太陽電池、燃料電池から有機ELにも —

2009年9月発行

定価104,500円(消費税込み)

住ベリサーチの調査研究レポート

住ベリサーチ株式会社 技術調査部 〒140-0002 品川区東品川2-5-8 天王洲パークサイドビル16F TEL 03-5462-7036 FAX 03-5462-7040

目 次

第1章	はじめに	
N I I I		

第 I 部 [薄膜技術の最新動向]

第2章	薄膜作製技術の最新動向	2
2.1 乾	式法(物理的薄膜作製技術、化学的気相薄膜作製技術)	2
2.1.1	スパッタリング	2
	1 ボックス回転型多元対向スパッタ	2
	2 傾斜回転ECRスパッタ	3
	3 コンビナトリアルスパッタ	3
	4 高周波重畳直流スパッタ	4
	5 誘導結合プラズマ支援型アンバランスマグネトロン・スパッタ	4
	6 非平衡スパッタ	5
	7 樹脂をターゲットとしたスパッタリング	5
	8 後処理としての高速酸化法	6
2.1.2	プラズマ応 用 成 膜 法(CVD、PVD)	6
	1 クラスター制御プラズマCVD	6
	2 異方性プラズマCVD	7
	3 プラズマ重合	8
	4 大気圧プラズマCVDによる微結晶Si薄膜の成膜	0
	5 トライボマイクロプラズマによるコーティング法1	1
2.1.3	アーク蒸着	2
	 T字状フィルタードアーク蒸着法	2
	2 シャンティングアーク1	3
2.1.4	イオンビーム利用成膜	3
	1 ガスクラスターイオンビーム装置 (GCIB)	3
	2 磁界励起型イオンプレーティング(MEP-IP法)1	4
	3 中性ビーム銃1	4
	4 シリコンナノブロック薄膜生成システム	5
2.1.5	レーザー利用成膜、パルスレーザー堆積法(Pulse Laser Deposition:PLD法)1	5
	1 PLD装置の改良と成膜1	6
	2 フェムト秒レーザーCVD1	6
	3 レーザー・イオンビーム複合成膜装置	6
	4 PLD法の応用1	6
	5 UVレーザーアブレーションによる機械的効果の有限要素モデル1	8
2.1.6	分子線エピタキシー(MBE)	8
	1 アンモニアMBEによるAlGaInN薄膜の形成1	8
	2 InGaN量子ドットの形成1	8

3	酸化亜鉛系半導体材料薄膜の形成	19
4	Fe ₃ Si/Ge薄膜の形成	19
5	ZnO薄膜の形成	20
2.1.7 📱	真空蒸着	20
1	Alq3の真空蒸着薄膜	20
2	有機分子の蒸着	20
3	蒸着重合	···21
4	複合成膜装置	23
2.1.8 🖇	原子層堆積法(Atomic Layer Deposition:ALD法) ········	23
1	ALD成膜装置の構造改良	24
2	ALD成膜時の前処理時間の最適化	25
3	液晶装置の製造	25
4	光学用多層薄膜の形成方法	26
5	MOS構造縦型量子ドットのAl ₂ O ₃ 絶縁膜形成方法	26
6	分子層堆積法(Molecular Layer Deposition: MLD法)	26
2.1.9 角	触媒化学気相成長法(Cat-CVD法)····································	26
1	高速堆積技術、バッファー層形成技術	27
2	成膜温度の低温化対策	27
2.1.10	ガスデポジション法(GD法)	28
1	GD装置	28
2	高分子フィルム基材への金属薄膜形成	28
3	2重ノズル型粒子噴射法	29
2.1.11	ミストCVD法(Mist-CVD法)	30
2.1.12	エレクトロスプレーデポジション法(ESD法)	30
2.2 湿式	法	32
2.2.1	コーティング	32
1	ディップコート	32
2	加水分解を伴う溶液プロセス	33
3	コート液のロングライフ化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33
4	生分解性高分子のスピンコート	34
5	ディッピング装置	34
2.2.2 🗄	印刷法	35
1	インクジェット法	35
2	インクジェット法の改良	36
3	パターン化単分子膜上への高分子薄膜の位置選択的形成	37
4	インクジェット法による酸化物超伝導膜の形成	38
5	印刷システムへの応用	38
6	マイクログラビア法	39
7	マイクロコンタクトプリント法	40

2.2.3 ラングミュア・ブロジェット法(Langmuir Blodgett:LB法)	41
1 2種類材料の混合と逐次成膜の比較	41
2 高分子界面活性剤を利用したLB膜の安定性	42
3 LB膜成膜後の自己再構築(インターカレーション)	42
2.2.4 交互積層法(Layer by Layer法:LbL法)	42
1 LbL法の装置の開発とその応用	42
2 スピンコート支援交互積層法	43
3 コアーシェル粒子膜の作製	43
4 疎水性多層超薄膜、ハイブリッド中空粒子の作製	44
5 インシュリンを含む薄膜の調製およびそのpH応答性分解	45
6 多孔性薄膜の作製とその評価	46
7 キトサンとアルギン酸の交互積層膜の作製	46
8 イオン液体を含む複合膜の作製	46
9 BioLbL法	
2.2.5 ゾルーゲル法	48
1 酸化インジウム薄膜成膜時の熱処理温度の影響	48
2 バインダーを使用しない機能紙の作製	48
3 シリカー酸化チタン系薄膜の作製	49
4 ポリイミド(PI)/Al ₂ O ₃ のin situ重合混合割合と特性との関係	50
5 流動界面ゾルーゲル法	50
6 ゲルーゾル法による微粒子合成法(参考)	
2.2.6 液相析出法(LPD法)	52
1 液相析出法による薄膜作製例	
2 金属酸化物3次元構造体の作製	
3 超撥水性TiO ₂ 薄膜の作製	
4 低温成膜としての酸化亜鉛薄膜の作製	
2.2.7 重合技術(電解重合、グラフト重合法、ポリマーブラシなど)	54
1 電解重合	54
2 グラフト重合、ポリマーブラシ	
2.3 大量生産への対応	60
2.3.1 大型スパッタリング装置	
2.3.2 プラズマCVD(PCVD)の大面積化	62
1 誘導結合型(ICP)	
2 マルチ内部アンテナ方式大面積誘導結合型プラズマ	62
3 マイクロ波励起超低電子温度高密度プラズマ装置	
4 反応性プラズマ蒸着法	
2.3.3 ロールツーロール触媒気相成長法(Cat-CVD)装置	
2.3.4 大型ALD成膜装置	
2.3.5 大面積フィルム基板へのマイクログラビア法による成膜	64

第3章 薄	腹材料技術の最新動向	5
3.1 金属]薄膜6	5
3.1.1	金薄膜	5
1	金ナノ粒子薄膜	5
2	半球状金属薄膜6	6
3	チオール単分子膜で保護された金クラスター	6
4	貴金属ナノシート	7
3.1.2	鉄薄膜	8
3.1.3 I	Ni薄膜	9
	Co、Cu薄膜6	
3.1.5 I	Ni、Cu薄膜7	0
3.1.6	Ti-Ni-Cu三元系形状記憶合金薄膜 ·······7	0
3.2 金属	『化合物、無機化合物の薄膜	1
3.2.1	酸化物ナノシート	1
1	ナノ超薄膜誘電体	1
2	ナノシートシード層7	2
3	強酸特性のナノシート7	3
4	配向積層薄膜	
5	発光ナノシート7	4
6	酸化物ナノシートから電子材料の創製	6
7	モンモリロナイト系	6
8	BaTiO ₃ のナノシート	7
	各種金属化合物、無機化合物 ········7	
	Mn、Mg化合物	
2	SiO ₂	
3	TiO ₂	
4	ZnO	
5	In ₂ O ₃	
6	酸化タングステン	
7	酸化タンタル、酸化ニオブ9	
	多成分薄膜	
	C12A7薄膜	
2		
3		
4		
5	FeGaO ₃ 薄膜9	
6	Eu含有HfO2薄膜	
7	酸化チタン-ジルコニア複合膜	
8	BaO-TiO ₂ -GeO ₂ 薄膜9	
9	BiTiFeO薄膜	8

3.3 炭素	系薄膜	. 99
3.3.1	ダイヤモンドライクカーボン薄膜(Diamond Like Carbon:DLC薄膜)	. 99
1	ペットボトル内面コーティングDLC膜	. 99
2	大型部材用DLCコーティング	· 99
3	大型、複雑形状DLCコーティング	·100
4	高密度、高硬度DLC薄膜(スーパーDLC)	·100
5	導電性DLC······	·101
6	フッ素 添加 DLC	·102
7	低温化成膜と基板との密着性改良	·103
3.3.2	ダイヤモンド系 薄 膜	·103
1	超伝導気相成長ダイヤモンド薄膜	·103
2	ナノクリスタルダイヤモンド薄膜	·104
3	金属微粒子修飾ダイヤモンド材料	·106
4	ダイヤモンド薄膜を用いたバイオチップ	·107
3.3.3	カーボンナノチューブ (CNT) 系 薄 膜	·107
1	乾式製法によるCNT薄膜	·107
2	湿式製法によるCNT薄膜	·108
3	低コストCNT薄膜	·108
4	導電性の大きい単層カーボンナノチューブ(SWCNT)とその薄膜	·108
5	金属性単層CNT薄膜	·109
6	配向制御CNT薄膜	·109
7	金属内包CNT······	·110
3.3.4	复合系炭素薄膜	·111
1	Pt-C薄膜	·111
2	CNT分散ポリイミド薄膜	·111
3	単層CNT分散TiO2薄膜	·112
4	グラフェン-CNT薄膜	·112
5	窒化炭素薄膜	·113
6	炭化ケイ素薄膜	·114
7	炭化鉄	·115
3.4 有機	薄膜	·116
3.4.1	氏分子、オリゴマー	·116
1	ルブレン・・・・・	·116
2	シアニン色素、アゾ色素	·117
3	ジアリールエテン (DAE)	·118
4	チオフェン、チオール系	·122
5	ペンタセン系	·125
6	フタロシアニン、ポルフィリン	·126
7	オリゴマー、デンドリマー	·128

3.4.2 7	ポリマー	129
1	ポリオレフィン系	129
2	ポリスチレン系	130
3	ポリアミド系	131
4	熱硬化系	132
5	フッ素系	134
6	アクリル系	134
7	ポリウレタン系	136
8	ポリマー各種	136
9	生分解性、天然高分子系	138
3.4.3	ブロックコポリマー	141
1	ブロックコポリマーのモルフォロジー	141
2	ブロックコポリマーの配向技術	147
3	ブロックコポリマーの応用	152
3.5 複合	薄膜	157
3.5.1 7	有機一無機	157
1	有機-シリカ薄膜	157
2	その他の有機-無機系薄膜	162
3.5.2	有機一金属	166
1	有機一貴金属	166
2	有機一卑金属	169
3.5.3	炭素系複合薄膜	170
1	炭素系-有機	170
2	炭素系-無機	173
3	炭素系-金属	174
3.5.4 🖸	■ 機 一 金 属 ·······	176
1	Ti-TiO ₂ 薄膜	176
2	アルミナ表面層にパラジウム	176
	有機 – 有機(高分子ブレンド系)	
	ポリーLー乳酸 (PLLA) ーポリ酢酸ビニル (PVAc)	
	ポリマーブレンド薄膜の表面	
	パルプーポリオキサレート	
	高分子ブレンド薄膜の相分離と脱濡れ(dewetting、はじき)	
5	Polyethylene oxide(PEO)-Polystyrene(PS)のブレンド	179
<u></u>		
	膜の性能、加工技術の最新動向	
	の性能	
	力学特性、密着性	
	ポリスチレン薄膜の動的粘弾性	
2	ポリカーボネート基板上のZnO膜の物性評価	182

3 ポリエステルフィルム基板上の金属薄膜の物性、密着性	182
4 微小材料試験によるポリイミド薄膜の力学特性	182
5 ポリイミドフィルム基板上のa-C膜の密着性	182
4.1.2 ガスバリア性	183
1 無機系	183
2 炭素系	188
3 有機系	189
4.1.3 濡れ性 脱濡れ性	190
1 親水性	190
2 撥水性	191
3 脱濡れ性	195
4.1.4 摩擦、摩耗特性	197
1 潤滑油中における窒化炭素膜の超低摩擦現象	197
2 水性媒体での吸着ポリエチレンオキシド層のせん断挙動	197
3 機械的耐久性増強のためのナノ粒子薄膜の水熱処理	197
4 荷電高分子ブラシ間の摩擦と垂直相互作用力	198
5 高摩擦表面の相手面の粗さと変形の影響	198
6 耐摩耗性イオン性液体超薄膜	199
4.1.5 エレクトロクロミズム、フォトクロミズム	199
1 フォトクロミズム	199
2 エレクトロクロミズム	203
4.1.6 磁 性	206
1 シリコーン樹脂中のAu/Ni-P中空マイクロロッド	206
2 (Zn, Cr)Te膜	206
3 GaMnAs膜	206
4 Fe ₃ O ₄ -Geナノ複合膜	207
5 ポリエチレンナフタレート基板にニッケル薄膜	207
6 デンドリマータイプのポリアミドアミン固定化磁気高分子複合体ミクロスフェア…	208
7 Ge量子ドットの磁気的性質	208
8 窒 化 鉄	209
4.1.7 超伝導性	209
1 鉄 系	209
2 イットリウム系 (YBCO)	210
3 ボロンドープダイヤモンド	210
4 MgB_2 系	211
5 チタン酸ストロンチウム単結晶	211
4.2 薄膜の加工	212
4.2.1 薄膜へのドーピング	212
1 無機系薄膜	212
2 炭素系薄膜	215

3 有機系薄膜	217
4.2.2 薄膜成膜後の後処理	219
1 熱処理、焼成、溶媒処理	219
2 エッチング	221
4.2.3 薄膜のナノ加工、パターン加工	224
1 レーザーによる加工	224
2 電子ビーム、イオンビームによる薄膜の加工	228
3 AFMによるナノ加工	232
4 ナノインプリント・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	233
4.2.4 鋳型法	236
1 ブロック共重合体を鋳型にしたCo/Pd磁性体記録膜	236
2 ブロック共重合体薄膜からのアスペクト比可変メソ細孔性シリカナノロッドアレイ	237
3 ブロック共重合体薄膜からの高秩序シリカ細孔およびストライプの作製	238
4 PS-b-PAAの自己会合による高規則性微多孔薄膜の形成とその制御可能表面特性の研究	239
5 ブロック共重合体薄膜からの無機ナノポーラス膜	240
6 ブロック共重合体の協同自己集合によるTiO2ナノ粒子ストリング2次元アレイ	240
7 蛍光性CdSeナノ粒子の2次元アレイ	241

第Ⅱ部 [薄膜のエレクトロニクス分野への応用最新動向]

第5章 約	色 縁 膜	243
5.1 低詞	誘電率膜(k < 3)	243
5.1.1	実用化が進む層間絶縁膜・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	243
	半導体MIRAIプロジェクト、日本電気、東芝、ソニー、富士通、三菱電機、	
	日立製作所、アルバック、旭硝子、旭化成、富士フイルム	
5.1.2	開発中の層間絶縁膜、低誘電率材料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	大陽日酸、物材研、Selete、東京大、東北大、九州大、大阪大、	
	京都大国際融合創造センター、東工大、首都大学東京、日鉱工業、	
	日東電工、日本ゼオン、出光興産、住友ベークライト	
5.2 中幕	程度の誘電率膜(3 <k<6)< th=""><th>257</th></k<6)<>	257
5.2.1	シリカ薄 膜	257
5.2.2	窒 化 シリコン膜	259
5.2.3	ポリイミド	
5.2.4	液晶配向膜	
5.3 高調	誘電率膜(k=6~数百)	
5.3.1	ゲート絶縁膜・・・・・・	
5.3.2	容量素子	

第6章	導	電	膜	276
6.1	透明	導電	膜	
6.1	.1 I	TO膜		
	1	研究	と商用化の実例	
	2	転写	方式	277
	3	イング	クジェット方式	
	4	コージ	ティング	
	5	ドライ	(方式	
	6	スプル	レーCVD法	
	7	ITO	ナノ粒子の製造技術	284
6.1	.2 Z	ZnO膜	Į	
	1	Ga添	物ZnO(GZO)系	
	2	Al添	加ZnO(AZO)系	
	3	ZnO	系	291
6.1	.3 I	το、z	ZnO膜のバリエーション	292
	1	In-Zi	n-O系	292
	2	ITO-	ZnO積層	293
	3	Zn-M	Ag-Al系	293
	4	金ナ	ノ粒子固定化ITO	294
6.1	.4	το、z	ZnO以外の透明導電膜・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	294
	1	TiO ₂		294
	2	C12A	$A7(12CaO \cdot 7Al_2O_3)$	295
	3	Mg(C	OH) ₂ -C _x	295
	4	鋳型	型 法	
	5	In ₂ O	3	297
	6	CNT	による透明導電膜	297
6.1	.5 à	尊電性	まポリマーによる透明導電膜	
		ポリチ	チオフェン系(PEDOT/PSS)、ポリアニリン系 など	
6.2	一般	配線	、ナノ配線用導電膜	
6.2			こ線	
	1	LSI同	句け多層配線用Cu配線	
	2	銅配	線の銅表面酸化膜の除去	
6.2			ジェットによる配線	
			配線基板	
			C上の微細配線	
		-	2線	
			細インクジェット	
6.2			こよる配線	
			ボンナノチューブ・ウェハ	
	2	多層	CNT配線	

3 CNTビアプロセス	
4 エラストマー-CNT-イオン液体系	
6.2.4 金属薄膜による配線	
1 金ナノ粒子薄膜のパターン化	
2 金ナノ粒子を種々の担体に担持する方法	
3 ポリマー基板上への銅薄膜パターンの作製	
6.2.5 ナノインプリントによる配線	
6.2.6 DNAによる配線 ······	
1 光ピンセットによるDNA配線	
2 DNA由来の透明電極	
6.2.7 ナノワイヤーによる配線技術	
6.2.8 自己組織化による配線	
第7章 無機半導体薄膜	
7.1 シリコン(Si)系半導体膜 ······	
7.1.1 非晶質シリコン(a−Si)の結晶化処理	
1 パルス変調レーザー照射	
2 軟X線照射処理	
3 熱プラズマジェットによる結晶化	
4 熱プラズマジェット結晶化技術の改良	
5 高周波 VHF熱マイクロプラズマジェット	
6 低温プラズマによる結晶化	
7 ジュール熱加熱による結晶化	
8 フラッシュランプ照射による結晶化	
7.1.2 多結晶Siの動向	
1 多結晶Siの低温での大粒径化と結晶欠陥低減技術	
2 Al誘起結晶化法(AIC)法による多結晶シリコン薄膜形成	
3 ラジカル制御プラズマCVDによる結晶シリコンの形成	
7.1.3 液相法	
7.1.4 Si薄膜に関する情報	
1 極低温でのa-Si合成	
 2 薄膜素子のLEDとしての評価	
7.1.5 炭化ケイ素(SiC)半導体薄膜	
1 高速のエピタキシャル成長技術	
2 SiCの結晶成長技術、デバイス化技術	
3 SiCダイオード	
4 SiCを適用したインバータ	
7.2 ゲルマニウム(Ge)系半導体膜	
7.2.1 非晶質Geの低温固相成長 ······	
7.2.2 多結晶Ge薄膜の低温形成 ······	

7.2.3 Ge半導体デバイス製造方法	
7.2.4 マイクロ波帯無線通信用SiGe HBT ······	
7.3 ガリウム(Ga)系半導体膜	
7.3.1 LED	
1 ハイブリッドPPD法	
2 多結晶AIN基板上のInGaN結晶	
3 窒化アルミニウムガリウム(AlGaN)系深紫外高輝度LED	
7.3.2 HEMT(High Electron Mobility Transistor)	
1 低消費電力型高周波デバイスGaN-HEMT	
2 GaN高耐圧デバイス	
3 電子デバイス用GaN結晶の製法とHEMT作製	
4 GaN HEMT増幅器	
5 縦型構造のGaNパワーデバイス	
7.4 強磁性酸化物半導体膜	
7.4.1 磁気ランダムアクセスメモリー(MRAM)	
7.4.2 スピンデバイス	
1 スピントロニクス不揮発性機能技術プロジェクト	
2 文部科学省 高機能・超低消費電力スピンデバイス・ストレージ基盤技術の開発	É334
3 イルメナイト・ヘマタイト系薄膜	
4 Ⅳ族強磁性半導体の創製とそのスピンデバイスへの応用	
7.4.3 鉄シリサイド系磁性材料	
7.4.4 希薄磁性半導体材料(ZnMnSn)As ₂	
7.4.5 希薄磁性半導体材料GaMnAs	
7.4.6 熱アシストスピン注入技術	
7.4.7 マイクロ波アシスト磁化反転	
7.5 酸化物半導体膜	
7.5.1 アモルファス酸化物半導体(TAOS)	
1 TAOSトランジスタ	
 2 透明アモルファス半導体TFT	
3 a-IGZOによる電子ペーパー	
7.5.2 ZnO	
1 ZnO薄膜トランジスタ	
2 ZnO半導体の改良	
 紫外線発光ダイオード	
7.5.3 抵抗変化メモリー(ReRAM、RRAM) ······	
7.6 炭素(C)系半導体膜	
7.6.1 CNT半導体 ····································	
1 塗布プロセスによるCNTトランジスタ	
2 高純度CNTによるトランジスタ	
3 CNT分散ポリマーを用いた電界効果トランジスタ	
4 単層カーボンナノチューブのFET	

7.6.2	グラフェン半 導 体	
1	グラフェン薄膜の作製	
2	グラフェンによるトランジスタ	
3	グラフェンFET	
7.7 タンパ	パク質の自己組織化を利用した量子ドット半導体	
第8章 有	機半導体薄膜	
8.1 有機	薄膜半導体と有機薄膜トランジスタ	
8.1.1 7	有機薄膜トランジスタの構造	
8.1.2 ≹	移動度の変遷、最新性能⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	
1	移動度の変遷	
2	高移動度の有機トランジスタ	
3	有機薄膜トランジスタ用材料	
8.1.3 \$	特許出願の動向	
8.2 有機	半導体材料の最新動向	
8.2.1 1	ペンタセンなど炭素 縮合四・五環系	
1	移動度と要因の整理	
2	単結晶化	
3	単結晶トランジスタ	
4	塗布法によるトランジスタ	
5	インクジェット法によるトランジスタ	
6	サブミクロンチャンネル長の有機薄膜トランジスタ	
7	ペンタセン誘導体の分子ワイヤによるトランジスタ	
8	ペンタセンとCuとの界面	
9	置換ペンタセンの合成	
10	ペンタセン誘導体の合成と評価-1	
11	ペンタセン誘導体の合成と評価-2	
12	ジブチルペンタセン	
13	新規縮合多環芳香族化合物の合成と応用	
8.2.2	チオフェン、ポリフェニレンビニレン化合物	
1	ケイ素架橋チオフェン	
2	チオフェン/フェニレンコオリゴマー(TPCO)-1	
3	チオフェン/フェニレンコオリゴマー(TPCO)-2	
4	ターチオフェン、クォータチオフェン	
5	末端にシアノ基を有するチオフェンオリゴマー(CH4T)	
6	テトラチアペンタレン骨格(TTP)を有する化合物	
7	カラムナー液晶材料	
8	ポリ(3-ヘキシルチオフェン) (P3HT)	
9	全印刷法によるプラスチック基板上のトランジスタアレイ	
10	メチル置換オリゴチオフェン	

	電荷移動錯体、金属錯体系	
1	TTF-TCNQとDBTTF-TCNQの組み合わせトランジスタ	
2	DM-DCNQIの金属錯体	
3	アンバイポーラ型 FET	
4	ホウ素 錯体	
8.2.4 7	ポルフィリン、フタロシアニン	
1	ポルフィリン化合物	
2	縮環ポルフィリン銅錯体	
3	テトラベンゾポルフィリン(TBP)	
4	塗布成膜の可能なフタロシアニン系材料	
5	アルキルチオフェン縮環ポルフィラジン	
6	フタロシアニン薄膜トランジスタの電場変調分光	
7	鉛フタロシアニンFET	
8	フタロシアニンによる透明なトランジスタ	
9	フタロシアニンの配向制御と電気特性	
8.2.5	夜晶性半導体	
1	新規液晶性有機半導体材料	
2	不純物の影響	
3	液晶性有機FET	
8.2.6	フラーレン系	
1	フラーレン	
2	フラーレンとペンタセン	
3	フラーレンと高分子材料の混合	
	フラーレンと高分子材料の混合 有機強誘電体メモリー	
8.2.7		
8.2.7 7	有機強誘電体メモリー ────────────────────────────────────	······377 ·····377
8.2.7 1 2	有機強誘電体メモリー フッ化ビニリデン/3フッ化エチレン共重合体	377 377 378
8.2.7 1 2 3	有機強誘電体メモリー フッ化ビニリデン/3フッ化エチレン共重合体 Pb(Zr _{0.52} Ti _{0.48})O ₃ 、PZT	377 377 378 378
8.2.7 1 2 3 4	有機強誘電体メモリー フッ化ビニリデン/3フッ化エチレン共重合体 Pb(Zr _{0.52} Ti _{0.48})O ₃ 、PZT ポリイミド基板とVDFオリゴマー	377 377 378 378 379
8.2.7 1 2 3 4 8.2.8	有機強誘電体メモリー フッ化ビニリデン/3フッ化エチレン共重合体 Pb(Zr _{0.52} Ti _{0.48})O ₃ 、PZT ポリイミド基板とVDFオリゴマー ペリレンジイミド3量体	377 377 378 378 379 379 379
8.2.7 1 2 3 4 8.2.8 1	有機強誘電体メモリー フッ化ビニリデン/3フッ化エチレン共重合体 Pb(Zr _{0.52} Ti _{0.48})O ₃ 、PZT ポリイミド基板とVDFオリゴマー ペリレンジイミド3量体 有機光電変換。	377 377 378 378 379 379 379 379
8.2.7 1 2 3 4 8.2.8 1	育機強誘電体メモリー フッ化ビニリデン/3フッ化エチレン共重合体 Pb(Zr _{0.52} Ti _{0.48})O ₃ 、PZT ポリイミド基板とVDFオリゴマー ペリレンジイミド3量体 「機光電変換 CMOSイメージセンサー	377 377 378 378 379 379 379 379 379 380
8.2.7 1 2 3 4 8.2.8 1 2 3	有機強誘電体メモリー フッ化ビニリデン/3フッ化エチレン共重合体 Pb(Zr _{0.52} Ti _{0.48})O ₃ 、PZT ポリイミド基板とVDFオリゴマー ペリレンジイミド3量体 「機光電変換 CMOSイメージセンサー 光駆動型有機トランジスタ	377 377 378 378 379 379 379 379 380 380
8.2.7 1 2 3 4 8.2.8 1 2 3 8.2.9	 有機強誘電体メモリー フッ化ビニリデン/3フッ化エチレン共重合体 Pb(Zr_{0.52}Ti_{0.48})O₃、PZT ポリイミド基板とVDFオリゴマー ペリレンジイミド3量体 有機光電変換 CMOSイメージセンサー 光駆動型有機トランジスタ 光情報入出力記録素子 	377 377 378 378 379 379 379 379 380 380 381
8.2.7 1 2 3 4 8.2.8 1 2 3 8.2.9 3 1	有機強誘電体メモリー フッ化ビニリデン/3フッ化エチレン共重合体 Pb(Zr _{0.52} Ti _{0.48})O ₃ 、PZT ポリイミド基板とVDFオリゴマー ペリレンジイミド3量体 「機光電変換 CMOSイメージセンサー 光駆動型有機トランジスタ 光情報入出力記録素子	377 377 378 378 379 379 379 379 379 380 381
8.2.7 1 2 3 4 8.2.8 1 2 3 8.2.9 1 2	 有機強誘電体メモリー フッ化ビニリデン/3フッ化エチレン共重合体 Pb(Zr_{0.52}Ti_{0.48})O₃、PZT ポリイミド基板とVDFオリゴマー ペリレンジイミド3量体 有機光電変換 CMOSイメージセンサー 光駆動型有機トランジスタ 光情報入出力記録素子 新規有機半導体 ヘキサベンゾコロネン(HBC)置換体 	377 377 378 378 379 379 379 379 380 380 381 381 382
8.2.7 1 2 3 4 8.2.8 1 2 3 8.2.9 1 2 3 1 2 3 8.2.9 3 1 2 3 8.2.9 3 1 2 3 8.2.3 8.2.3 3 8.2.3 8.2.3 3 8.2.3 3 8.2.3 3 8.2.3 3 8.2.3 3 8.2.3 3 8.2.3 3 8.2.3 3 8.2.3 3 8.2.3 3 8.2.3 3 8.2.3 3 8.2.3 8.2.3 8.2.3 8.2.3 8.2.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8	 「機強誘電体メモリー フッ化ビニリデン/3フッ化エチレン共重合体 Pb(Zr_{0.52}Ti_{0.48})O₃、PZT ポリイミド基板とVDFオリゴマー ペリレンジイミド3量体 「機光電変換 CMOSイメージセンサー 光駆動型有機トランジスタ 光情報入出力記録素子 新規有機半導体 ヘキサベンゾコロネン(HBC)置換体 ペリレンテトラカルボキシルジイミド(PTCDI) 	
8.2.7 1 2 3 4 8.2.8 1 2 3 8.2.9 1 2 3 8.3 有機	 f機強誘電体メモリー フッ化ビニリデン/3フッ化エチレン共重合体 Pb(Zr_{0.52}Ti_{0.48})O₃、PZT ポリイミド基板とVDFオリゴマー ペリレンジイミド3量体 f機光電変換 CMOSイメージセンサー 光駆動型有機トランジスタ 光情報入出力記録素子 が規有機半導体 ヘキサベンゾコロネン(HBC)置換体 ペリレンテトラカルボキシルジイミド(PTCDI) n型有機半導体用の化合物の開発 	377 377 378 378 378 379 379 379 379 380 380 381 381 382 382 383
8.2.7 1 2 3 4 8.2.8 1 2 3 8.2.9 1 2 3 8.3 有機 8.3.1	 「機強誘電体メモリー フッ化ビニリデン/3フッ化エチレン共重合体 Pb(Zr_{0.52}Ti_{0.48})O₃、PZT ポリイミド基板とVDFオリゴマー ペリレンジイミド3量体 「機光電変換 CMOSイメージセンサー 光駆動型有機トランジスタ 光情報入出力記録素子 新規有機半導体 ヘキサベンゾコロネン(HBC)置換体 ペリレンテトラカルボキシルジイミド(PTCDI) n型有機半導体用の化合物の開発 半導体の製法、構造、物性物理、制御 	

ć	3 コロイダルリソグラフィー法	
2	↓ 有機発光型トランジスタ	
Ę	う フレキシブル電子ペーパー	
6	5 薄膜単結晶からのFET-1	
7	7 薄膜単結晶からのFET-2	
8	8 Evaporative Spray Deposition from Ultradilute Solution (ESDUS)法…	
8.3.2	構 造	
]	半導体デバイス	
2	2 有機半導体の絶縁膜、保護膜	
ę	3 有機半導体の電極	
8.3.3	有機半導体素子の接触、界面・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
]	_ 有機半導体素子の界面制御	
2 2	2 電極の形成方法の比較	400
ŝ	3 シランカップリング剤の構造・界面制御	401
8.3.4	有機半導体素子の配向	
1	_ グラフォエピタキシー法	
2 2		
ę	3 薄膜の分子配向と電気特性	
4	↓ 光配向性ポリマーによる配向	
8.3.5	有機半導体素子の評価	404
]	電気特性	404
2	2 分子情報、構造の評価	
	- 146	
••••••	¶機EL	
	畿EL照明 ······	
	NEDO「照明用高効率有機EL技術の研究開発」プロジェクト	
9.1.2	有機EL照明の実用化	
	Lumiotec(ルミオテック)(三菱重工業、ローム、凸版印刷、三井物産)、	
	日本電気、コニカミノルタ、出光興産、パナソニック電工、	
	オスラム オプトセミコンダクターズ、新日鐵化学、日本ゼオン	
	照明素子としての実用化に向けた課題	
	幾ELディスプレイ最 新 動 向	
9.2.1	大型有機ELディスプレイ	
	NEDO、大日本スクリーン製造、エプソン、東芝松下ディスプレイテクノロジー、ン	
9.2.2	中・小型有機ELディスプレイ	
	ソニー、KDDI、NHK技研、京セラ、富山大、 ブラザー工業、	
	大日本印刷、有機エレクトロニクス研究所	
9.2.3	フレキシブル有機ELディスプレイ	
	NEDO「高効率有機デバイスの開発」プロジェクト、ソニー、大阪大、東京	L芸大、
	NHK技研、富山大、ブラザー工業、KAST、千葉大、パイオニア	

9.2.4	透明	明性を利 用した有 機 ELディスプレイ	422
	フ	ルカラー透明有機EL素子、両面発光有機ELパネル	
9.3 有	機EL	_の薄膜材料	425
9.3.1	低乡	分子系 発 光 材 料	425
	1 蛍	全光低分子	425
	2 青	f 色 発 光 材 料 ······	426
	3 緑	≹色りん光材料	426
	4 有	f機EL青色素子	426
	5 蛍	全光発光材料複素環化合物	427
	6 蛍	全光材料を用いた赤色発光材料	427
	7 J	ン光による高発光効率化と塗布プロセスによる低コスト化	428
	8 色	色純度が高い赤色りん光材料	428
9.3.2	高分	分子系発光材料······	428
	1 住	E友化学の取り組み	428
	2 非	▶ 共役型高分子りん光発光材料	429
	3 蒸	系着重合法による共役系高分子発光材料	430
	4 積	青層型発光素子	432
9.3.3	輸	送層、注入層材料	433
	1 オ	-リゴマー系	433
	2 S.	AMによる有機EL素子の正孔輸送層の膜安定性の改善	434
	3	昆合LB法による混合系	434
	4 代	、表的な正孔注入層の比較	436
	5 有	「機半導体を結合したグラフトポリマー	436
	6 低	5.駆動電圧化	437
	7 霍	『子輸送材料の検討	438
	8 デ	デンドリマーを用いた正孔輸送材料	439
9.4 成	膜方	`法、装置、評価	439
9.4.1	成服	莫方法	439
	1 山	」形大学の取り組み	439
	2 ブ	プラズマ重合膜と無機膜の積層保護膜	440
	3 ブ	プラズマ重合によるホール輸送層	441
	4 透	§明有機EL素子	441
	5 M	foO3による劣化改善	441
	6 作	■製時の真空度と劣化	442
9.4.2	成服	莫装置	442
	Ξ	[菱重工業、トッキ、春日電機、アインテスラ、日立造船、ヒラノテクシード	
9.4.3	有相	幾EL素子の評価	443
	1 B	ackside SIMSによる有機EL素子界面の不純物拡散評価	443
	2 厪	骨構造の傾斜断面分析	444

第10章 🕽	太陽電池	
10.1 太	陽電池の一般情勢	
10.2 シリ	リコン系太陽電池の薄膜技術	
10.2.1	高速化、大型化	
1	大型化の量産例	
2	局在プラズマCVDによる高速成膜	
3	Cat-CVD法	
4	エピタキシャルリフトオフ法 (ELO法)と急速蒸着法 (RVD法)	
5	マイクロ波プラズマによる微結晶シリコン膜の大面積成膜	
6	RF帯のプラズマCVD	
10.2.2	高効率化	
	NEDO「太陽光発電システム未来技術研究開発」太陽電池開発の成果	
2	ハイブリッド化-1	
3	ハイブリッド化-2	
4	ハイブリッド化-3	
5	多結晶太陽電池(参考)	
6		
7	波長変換薄膜フィルタ	
8		
10.2.3	安定化	
1		
	a-Si:H薄膜中のSi微粒子(クラスタ)対策	
10.2.4	フィルム基板	
	富士電機、TDK、フレキシブル太陽電池基材コンソーシアム	
	合物型太陽電池	
10.3.1	化合物型太陽電池のトピックス ·····	
1		
	InGaP/InGaAs/Ge 3接合太陽電池の開発	
10.3.2	化合物型太陽電池の実用化動向	
	昭和シェル石油、本田技研工業	
10.3.3	化合物太陽電池の研究動向	
1		
	レーザーアシスト成膜法の最適化、結晶性向上	
	スクリーン印刷/焼結法	
4	InGaN 系タンデム太陽電池の基盤技術	
5		
6		
7		
8	AgGaSe ₂	

10.4 有相	幾薄膜系太陽電池 ····································	471
10.4.1	低分子系	471
1	フラーレン系	471
2	フタロシアニン系	475
3	ポルフィリン系	476
10.4.2	高分子系	478
1	トピックス	478
2	P3HT/PCBMブレンド系	479
3	光電変換層の製造時溶媒の影響	479
4	TiO2ホールブロック層	480
5	光捕集層の効果	480
6	ポリマー分子量の影響	481
7	自己組織化によるバッファー層形成	481
8	P3HT-フラーレン ラミネート法	481
9	ナノインプリント法	481
10	SWNT-P3HT系	481
10.5 色季	素増感型太陽電池	482
10.5.1	色素増感型太陽電池の実用化状況	483
	ペクセルテクノロジーズ、ソニー、シャープ、TDK、太陽誘電、グンゼ、大日本印刷	
10.5.2	色素増感太陽電池の研究開発⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	484
1	タンデム型太陽電池	484
2	表面処理	485
	ZnO電極·····	
4	対 極	485
5	新規色素、新規サブモジュール	486
6	電解液の漏出対策	486
7	電池特性向上対策	486
8	フィルム型でカラフルな色素増感太陽電池	487
第11章	然料電池、二次電池	488
11.1 燃料	斜電池 ······	488
11.1.1	燃料電池を取り巻く環境	488
	研究機関、研究プロジェクト、規格、メーカー	
11.1.2	燃料電池用薄膜材料·······	489
1	多孔性配位高分子と無機材料のナノハイブリッド薄膜	489
2	ナノ薄膜電解質	490
3	フレキシブルマイクロ燃料電池	491
4	携帯電話用マイクロ燃料電池	491
5	マイクロ燃料電池(参考)	491

11.2.1	直 接 メタノール 型 燃 料 電 池 (DMFC)	
	シャープ、パナソニック、旭化成、トクヤマ、群馬大、日立製作所、東レ、	
	長岡技術大、東芝、九州工大、ダイハツ工業、AIST	
11.2.2	固体高分子型燃料電池(PEFC)	497
1	PEFCの電解質膜	497
2	PEFCの電極	
3	PEFCの部材	503
11.2.3	固体酸化物型燃料電池(SOFC)	504
1	薄膜SOFC	504
2	PLDによる薄 膜 - 1	505
3	PLDによる薄 膜 - 2 ·····	505
4	中温型SOFC用の電解質	505
5	CVI法によるイットリア安定化ジルコニア薄膜	505
11.2.4	微生物型燃料電池(MFC)	506
1	カセット微生物FCシステム	506
2	電子伝達メディエータ修飾酵素電極	506
3	複合カチオン交換膜	508
11.3 二:	次電池の最新動向	509
11.3.1	リチウムイオンニ次 電 池 の 開 発	509
	アルバック、岩手大、日本電気硝子、京都大、住友電工	
11.3.2	リチウムイオン電 池 セパレータ	
	三菱樹脂、旭化成、日立グループ	
11.3.3	リチウムイオン電池電極材料	
	東芝、東工大、AIST、ムラタ製作所、エナックス、大研化学工業、	
	本庄ケミカル、JFEミネラル、富士重工業	
11.3.4	リチウムイオン電池の電解質	
	電力中央研究所、出光興産	
11.3.5	リチウム−空気電池	517
11.3.6	ニッケル水素電池	
	三洋電機、パナソニック、川崎重工業	
	有機ラジカル電池	
11.3.8	分子クラスター電池	519
第12章 -	センサー	
12.1 物	理センサー	
	フィルタレスUVセンサー、ZnO UVセンサー、ダイヤモンド紫外線センサー、	
	カーボンナノチューブIRセンサー、SEIRA効果利用IRセンサー、	
	熱型赤外線イメージセンサー、薄膜熱電対、スルホン化ポリイミド湿度センサー	`
	歪み検出酸化クロム薄膜、触覚センサー、複合窒化物薄膜圧力センサー、	
	金属ガラス合金薄膜圧力センサー、加速度センサー、磁気センサー	

12.2 化学センサー
マイクロ熱電式水素ガスセンサー、酸化タングステン水素ガスセンサー、
CNT分散高分子薄膜水素ガスセンサー、マクロポーラスPdO薄膜水素ガスセンサー
NOxセンサー、大気汚染ガスセンサー、酸素センサー、炎センサー
あとがき
略 語 表

参考文献
