FPD用有機材料の最近の進歩

— プラスチック基板で何かが起こる —

2008年9月発行

定価104,500円(消費税込み)

住ベリサーチの調査研究レポート

住ベリサーチ株式会社 技術調査部 〒140-0002 品川区東品川2-5-8 天王洲パークサイドビル16F TEL 03-5462-7036 FAX 03-5462-7040

は	じ	හ	(こ	1
第	1 章	È.	フラットパネルディスプレイ (FPD)の動きとプラスチック基板	2
	1.	1	プラスチック基板による新規なFPD構成の可能性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
	1	. 1.	.1 プラスチック基板を使った表示体の実用化状況	2
		(1)) 液晶表示体(LCD)	3
		(2))有機EL表示体(OLED)	3
		(3)) 電子ペーパー	3
		(4)) その他	3
	1	. 1.	. 2 基板構成の変化	4
		(1)) 反射機能を持った基板	5
		(2)) 導光板機能を持った基板	5
		(3)) 拡散機能を持った基板	5
		(4))集光機能を持った基板	5
		(5))位相差機能を持った基板	6
		(6))偏光板機能を持った基板	6
) 光散乱機能を持った基板	
	1		.3 光学機能素子の構成の変化	
) バックライトユニット	
		(2))位相差膜、偏光板	7
	1.	2	新たに広がるディスプレイの可能性・・・・・・	7
	1	. 2.	.1 プラスチック基板による表示体の形態	8
		(1))曲がった表示	8
		(2)) ベンダブルな表示	8
		(3)) ローラブルな表示	9
		(4))フォルダブルな表示	0
	1	. 2.	.2 プラスチック基板による新しい市場創出	1
	1	. 2.	.3 各種表示体とその展開の可能性	2
) LCD 1	
		(2)) OLED 1	3
		(3)) 電子ペーパー	3
		(4))プラズマディスプレイパネル(PDP)	4
	1.	3	新たな低コスト、省資源プロセスの可能性	4
	1	. 3.		
	1	. 3.	. 2 真空工程から常圧工程へ	4
			. 3 サブトラクト法からアディティブ法への移行	
	1	. З.	. 4 転写法	5
	1	. З.		
	1	. 3.		
	1	. 3.		
		. 3.		
		. 3.		
	1	. 3.	. 10 コスト低減	17

1.4 プラスチックによる新しいパネル構成	17
1.4.1 TRADIMの層構成······	17
1.4.2 電子ペーパーにおけるRTR製法	18
1.4.3 インセル方式	19
1.5 今後の展望	19
第2章 FPD用基板に要求される性能とプラスチック基板の対応	21
2.1 ガスバリア性(水蒸気、酸素)	
2.1.2 各種バリア性材料	23
	23
	24
(3) 無機バリア成膜材料	26
(4) 有機バリア成膜材料	31
2.1.3 バリア膜の付与方法(スパッタリング、CDV、コーティング)	31
	33
	33
	33
(3) プラズマ強化化学気相成長PECVD (Plasma Enhanced CVD)法	34
(4) プラズマ補助原子層堆積(PA-ALD: Plasma Assist Atomic layer deposition)法…	35
(5) 大気圧近傍でのCVD法	36
(6) 転写法	37
2.1.6 ゾルーゲルコート法とドライ成膜による無機複合バリア膜	40
2.1.7 有機膜と無機バリア膜の積層膜···································	41
 (1) 同一設備で無機膜・有機膜を形成する方法	
(2) ドライ成膜とウェット成膜を使った無機・有機積層膜	
(3)層状無機粒子複合有機材料と無機バリア膜の積層	
2.1.8 バリア性付与におけるその他の課題	45
	45
(1) バリアフィルムによる封止(2) バリア薄膜による封止	
(2) ハリノ 澤 展 に よ る 封 止	46
 (3) 吸湿・吸収機能を有りるOLED用	
 (4) バリア展(国工展)の製造設備 (5) ガラス基板によるOLED構造およびOLEDの安定性試験	
	50 51
	54
2.2 吸水性·吸湿性	56
2.2.1 FPD製造における吸水の発生する工程····································	56
2.2.2 一般的な基板材料の吸水特性	
 2.2.3 吸水性をカバーする対策 (1) 地応のおぼにたる四本地のお白 	
 (1) 樹脂の改質による吸水性の改良	
	58
(3)吸水性をカバーするセル化工程	59

2.3 耐熱性	59
2.3.1 基板における耐熱性の要求特性	60
(1) 導電膜の形成における加工温度	60
(2) TFTの形成における加工温度	60
(3) CF、隔壁、柱状スペーサ等の形成における加工温度	60
(4) 配向膜の形成における加工温度	61
(5) 封止工程での加工温度	61
(6) OLEDにおける加工温度	61
(7) 電子ペーパーにおける加工温度	61
(8) PDPにおける加工温度	61
2.3.2 プラスチック基板の耐熱性向上	62
2.3.3 各種機能層の低温形成技術····································	64
 (1) 導電膜の低温形成	64
(2) TFTの低温形成	65
(2) カラーフィルタ(CF)、有機EL素子の低温形成	66
(4) 隔壁、スペーサ、配向膜、シール剤等の低温形成	67
2.3.4 低温加工可能な機能材料の開発状況	67
	07
2.4 CTE(寸法変化) ····································	69
2.4.1 プラスチックにおけるCTEの低減検討·······	69
(1)層状無機粒子材料の複合	70
(2) 無機繊維材料の複合	70
(3) 有機繊維材料との複合	70
(4) 樹脂改質	70
(5) 熱処理、延伸等	71
2.4.2 FPD加工時におけるCTE低減の検討	71
(1) ガラス等剛性基板への固定(貼り合せ)によるCTE変化の低減	72
(2) 金属薄板とプラスチックフィルム複合基板による透過型LCD基板	72
2.4.3 ソリ防止の検討	72
(1) 積層される膜材料と基板材料とのCTEを近づけることによるソリの低減	72
(2) 高ヤング率基板	72
(3) 対称型の構造を持たせた基板	73
(4) 接着層を緩衝層として使用する方法	73
(5) 無機膜を、成膜休止期間等を設けて形成する方法	74
(6) 表示体パネル全体のソリを低減する方法	74
2.4.4 CTEのまとめ	75
2.5 平滑性(平坦性)	76
2.5.1 平滑性の要求特性	76
(1) OLEDにおける平滑性(平坦性)の要求特性	76
	77
	77
	79
 (1) 超平滑性を有するPES基板	80
(2)超平滑コーティング層を有するPEN基板材料	80
	80
	80
(5) ガラスクロス等無機繊維材料との複合基板の平坦化法	80

2.5.3 平滑化材料	82
(1)オキセタン含有平坦化材料	82
(2)アクリル系コーティングにおける表面自由エネルギーと平滑性	82
(3) カルド系紫外線硬化型平滑化コーティング剤	83
(4)金属アルコキシドによる平坦化層(バリア性向上を目的として)	83
(5) 塗布特性に優れたアクリレート共重合体平滑化材料	84
2.5.4 評価法と課題	
2.6.1 プラスチック材料の可視光線部での透過性向上	
(1) 脂肪族ポリイミド(PI)による透明性向上	
(2)フッ素化ポリイミド(PI)による高い光線透過性フィルム	
2.6.2 無機粒子フィラー複合材料における透明性維持・向上 ····································	
(1) 層状無機化合物フィラー分散	
(2) ナノ粒子-有機マトリックス	
(3)粒子分散系エポキシ樹脂基板	
2.6.3 無機繊維、有機繊維との複合基板の透明性維持・向上	
(1)ガラスクロスと屈折率が近似した基板材料構成	
(2) ガラスに近いアッベ数を持つ材料選択	
2.6.4 表面コーティングによる透明性の向上	
2.6.5 紫外部における透過性······	
(1) 基板に要求される紫外線透過特性	
(2)紫外部の透過性の良いセルロース形基板材料	90
	~ 4
2.7 複屈折およびレタデーション(位相差)制御	91
2.7 複屈折およびレタデーション(位相差)制御	
	91
2.7.1 複屈折とレタデーション(位相差)の発生機序	91 92
2.7.1 複屈折とレタデーション(位相差)の発生機序	91 92 93
2.7.1 複屈折とレタデーション(位相差)の発生機序	91 92 93 93
 2.7.1 複屈折とレタデーション(位相差)の発生機序	91 92 93 93 93
 2.7.1 複屈折とレタデーション(位相差)の発生機序 2.7.2 基板材料に要求される光学等方性・レタデーション特性 2.7.3 固有屈折率の低減の試み (1)ナノサイズの針状無機結晶微粒子のドープ (2)低分子化合物のドープおよび共重合 	91 92 93 93 93 93
 2.7.1 複屈折とレタデーション(位相差)の発生機序 2.7.2 基板材料に要求される光学等方性・レタデーション特性 2.7.3 固有屈折率の低減の試み (1)ナノサイズの針状無機結晶微粒子のドープ (2)低分子化合物のドープおよび共重合 (3)負の固有屈折率を有するポリマーとのブレンド 	91 92 93 93 93 93 93
 2.7.1 複屈折とレタデーション(位相差)の発生機序 2.7.2 基板材料に要求される光学等方性・レタデーション特性 2.7.3 固有屈折率の低減の試み (1)ナノサイズの針状無機結晶微粒子のドープ (2)低分子化合物のドープおよび共重合 (3)負の固有屈折率を有するポリマーとのブレンド 2.7.4 光弾性複屈折の制御 	 91 92 93 93 93 93 93 93 94
 2.7.1 複屈折とレタデーション(位相差)の発生機序 2.7.2 基板材料に要求される光学等方性・レタデーション特性 2.7.3 固有屈折率の低減の試み (1)ナノサイズの針状無機結晶微粒子のドープ (2)低分子化合物のドープおよび共重合 (3)負の固有屈折率を有するポリマーとのブレンド 2.7.4 光弾性複屈折の制御 2.7.5 低レタデーション材料開発 	91 92 93 93 93 93 93 94 94
 2.7.1 複屈折とレタデーション(位相差)の発生機序 2.7.2 基板材料に要求される光学等方性・レタデーション特性 2.7.3 固有屈折率の低減の試み (1)ナノサイズの針状無機結晶微粒子のドープ (2)低分子化合物のドープおよび共重合 (3)負の固有屈折率を有するポリマーとのブレンド 2.7.4 光弾性複屈折の制御 2.7.5 低レタデーション材料開発 (1)脂肪族ポリエステル基板材料 	91 92 93 93 93 93 93 93 94 94
 2.7.1 複屈折とレタデーション(位相差)の発生機序 2.7.2 基板材料に要求される光学等方性・レタデーション特性 2.7.3 固有屈折率の低減の試み (1)ナノサイズの針状無機結晶微粒子のドープ (2)低分子化合物のドープおよび共重合 (3)負の固有屈折率を有するポリマーとのブレンド 2.7.4 光弾性複屈折の制御 2.7.5 低レタデーション材料開発 (1)脂肪族ポリエステル基板材料 (2)脂肪族ポリカーボネート 	 91 92 93 93 93 93 94 94 94 95
 2.7.1 複屈折とレタデーション(位相差)の発生機序	91 92 93 93 93 93 93 93 94 94 94 95 95
 2.7.1 複屈折とレタデーション(位相差)の発生機序 2.7.2 基板材料に要求される光学等方性・レタデーション特性 2.7.3 固有屈折率の低減の試み (1)ナノサイズの針状無機結晶微粒子のドープ (2)低分子化合物のドープおよび共重合 (3)負の固有屈折率を有するポリマーとのブレンド 2.7.4 光弾性複屈折の制御 2.7.5 低レタデーション材料開発 (1)脂肪族ポリエステル基板材料 (2)脂肪族ポリカーボネート (3)シリコーン基板材料 2.7.6 ガラス複合材料におけるレタデーション、光漏れの解消 	91 92 93 93 93 93 93 94 94 94 95 95
 2.7.1 複屈折とレタデーション(位相差)の発生機序… 2.7.2 基板材料に要求される光学等方性・レタデーション特性 2.7.3 固有屈折率の低減の試み (1)ナノサイズの針状無機結晶微粒子のドープ (2)低分子化合物のドープおよび共重合 (3)負の固有屈折率を有するポリマーとのブレンド 2.7.4 光弾性複屈折の制御 2.7.5 低レタデーション材料開発 (1)脂肪族ポリエステル基板材料 (2)脂肪族ポリカーボネート (3)シリコーン基板材料 2.7.6 ガラス複合材料におけるレタデーション、光漏れの解消 (1)繊維の配列を規制したレタデーション制御 	91 92 93 93 93 93 93 93 93 94 94 94 95 95 95
 2.7.1 複屈折とレタデーション(位相差)の発生機序	91 92 93 93 93 93 93 94 94 94 95 95 95 95 95
 2.7.1 複屈折とレタデーション(位相差)の発生機序 2.7.2 基板材料に要求される光学等方性・レタデーション特性 2.7.3 固有屈折率の低減の試み (1)ナノサイズの針状無機結晶微粒子のドープ (2)低分子化合物のドープおよび共重合 (3)負の固有屈折率を有するポリマーとのブレンド 2.7.4 光弾性複屈折の制御 2.7.5 低レタデーション材料開発 (1)脂肪族ポリエステル基板材料 (2)脂肪族ポリカーボネート (3)シリコーン基板材料 2.7.6 ガラス複合材料におけるレタデーション、光漏れの解消 (1)繊維の配列を規制したレタデーション制御 (2)低弾性率樹脂複合基板による光漏れの解消 (3)偏光板による光漏れの解消 (4)負の屈折性を有する液晶のドーピング 	 91 92 93 93 93 93 94 94 94 95 95 95 96 96
 2.7.1 複屈折とレタデーション(位相差)の発生機序	91 92 93 93 93 93 93 93 94 94 94 95 95 95 95 95 96 96
 2.7.1 複屈折とレタデーション(位相差)の発生機序 2.7.2 基板材料に要求される光学等方性・レタデーション特性 2.7.3 固有屈折率の低減の試み (1) ナノサイズの針状無機結晶微粒子のドープ (2) 低分子化合物のドープおよび共重合 (3) 負の固有屈折率を有するポリマーとのブレンド 2.7.4 光弾性複屈折の制御 2.7.5 低レタデーション材料開発 (1) 脂肪族ポリエステル基板材料 (2) 脂肪族ポリカーボネート (3) シリコーン基板材料 2.7.6 ガラス複合材料におけるレタデーション、光漏れの解消 (1) 繊維の配列を規制したレタデーション制御 (2) 低弾性率樹脂複合基板による光漏れの解消 (3) 偏光板による光漏れの解消 (4) 負の屈折性を有する液晶のドーピング 2.8.1 高剛性材料	91 92 93 93 93 93 93 94 94 94 95 95 95 95 95 96 96 96 96 97
 2.7.1 複屈折とレタデーション(位相差)の発生機序	91 92 93 93 93 93 93 94 94 94 95 95 95 95 96 96 96 97 97
 2.7.1 複屈折とレタデーション(位相差)の発生機序 2.7.2 基板材料に要求される光学等方性・レタデーション特性 2.7.3 固有屈折率の低減の試み (1) ナノサイズの針状無機結晶微粒子のドープ (2) 低分子化合物のドープおよび共重合 (3) 負の固有屈折率を有するポリマーとのブレンド 2.7.4 光弾性複屈折の制御 2.7.5 低レタデーション材料開発 (1) 脂肪族ポリエステル基板材料 (2) 脂肪族ポリカーボネート (3) シリコーン基板材料 2.7.6 ガラス複合材料におけるレタデーション、光漏れの解消 (1) 繊維の配列を規制したレタデーション制御 (2) 低弾性率樹脂複合基板による光漏れの解消 (3) 偏光板による光漏れの解消 (4) 負の屈折性を有する液晶のドーピング 2.8.1 高剛性材料	91 92 93 93 93 93 93 94 94 94 95 95 95 95 95 96 96 96 97 97 97

	2.8	.3 熱時高弾性を維持する方法	97
	(1) 延伸処理とゲル化処理	97
	(2)有機無機ハイブリッド	97
	2.8	. 4 小さな曲率半径への検討	98
	2.9	接着性 • 積層性	98
		. 1 接着性、積層性を親和性の向上により得る方法	
)シルセスキオキサン化合物含有ポリマー	
			99 101
			101
			102 103
			103
	2.9		103
			103
			104
			104
			104
			105
	2.10		105
			105
			105
			106
			106
	(2)非溶出性脂環式オレフィン樹脂コート膜	106
	2.11	価格	106
	2.12	まとめ	107
			107
第	3章	プラスチック基板開発の動向	108
- 1-	3.1		
			108
			108
			109
			110
			111
			113
			115
			116
			117 120
			123 123
			125
			125 125
	רי ו		

3.1.6 ポリスルフォン(PSF, PSU)樹脂基板····································	126
3.1.7 ポリアリレート(PAR)樹脂基板	126
(1)耐熱性、耐候性に優れたPAR樹脂および基板	126
(2) 高耐熱PAR系樹脂基板	128
(3) PARと耐熱支持材料とのハイブリッド	128
3.1.8 環状ポリオレフィン(COP, COC)樹脂基板 ····································	128
(1)耐熱性の向上	130
(2)CTEを改良したCOP基板	132
(3) ガラス表面への樹脂膜材料(表面コート樹脂)	133
3.1.9 セルロース系樹脂基板	134
(1)耐熱性の向上	135
(2)レタデーション特性の改善	136
(3)バリア性の向上した可塑剤減量セルロース系基板	137
(4) その他セルロース系材料の特性向上策	137
3.1.10 ポリイミド(PI)樹脂基板······	138
(1)透明性PI基板材料	139
(2) CTEの改善	141
(3) 高耐熱・低吸水透明PIフィルム基板	143
(4) 高耐熱・高屈折率透明PIフィルム基板	144
3.1.11 ポリアミドイミド(PAI)樹脂基板	145
3.1.12 マレイミドーオレフィン樹脂基板	145
3.1.13 ポリアミド(PA)樹脂基板 ······	148
3.1.14 アクリル系樹脂基板 ····································	149
(1) 耐熱性の向上	149
(2) CTEの改善	152
 (3) 低1gアクリル樹脂基板 ····································	154
•	154
3.1.16 エポキシ系樹脂基板 (1)ガラスクロス複合基板······	155
(1) カンスクロス復告基板	158
(2) 払取機能を有りる基板	161
 (3) フィノー 分取示樹脂 茎板	163
3.1.17 シリコーン系樹脂フィルム基板	166 166
3.1.18 ポリベンズアゾール系樹脂基板	169
3.1.19 エピスルフィド化合物による基板	170
3.1.20 液晶ポリマー (LCP) 基板····································	171
3.1.21 シアネート系樹脂基板 ····································	171
3.1.22 芳香族エーテル系樹脂基板····································	172
3.1.23 その他のプラスチック基板	174
 (1)酸化ケイ素・樹脂複合基板	174
(1) 酸にノイ 宗 個加後日 巫仏(2) 光学等方性の耐熱フィルム	174
(2) 元子寺方住の両ボショルム (3) 耐熱180℃の透明基板フィルム	174
(4) バリア性の高いOLED用基板	174
(4) / / / / / / / / / / / / / / / / / / /	174
(6) スーパーエンプラ ·······	174

3.2 プラスチック基板の改質	175
3.2.1 無機粒子複合基板	175
(1)ナノ粒子との複合	175
(2) 高熱伝導性基板	177
3.2.2 ファイバー複合基板	178
(1)バイオナノファイバー複合基板	178
(2)ガラスフレーク/ガラスファイバーの複合基板	179
3.3 プラスチック基板と無機基板とのハイブリッド基板	179
3.3.1 ガラス/プラスチック······	179
(1) ガラスをプラスチックで強化した基板	180
(2) ガラス基板とプラスチック基板の組み合せディスプレイ	180
3.3.2 金属/プラスチック····································	181
(1)低CTE基板	181
(1) 図目2単位(2) 表面平滑性の高い基板	181
(2) 衣面中情任の間や 基後(3) 反射型、透過型のディスプレイ基板	181
3.3.3 粘土を主成分とする複合耐熱フィルム····································	181
3.4 基板への機能の付与	183
3.4.1 反射型LCDにおける反射機能を持った基板	183
(1) 指向性パターンを持つ反射型基板	183
(2)非指向性反射型基板	185
3.4.2 導光板機能を持った基板	186
(1) 光ガイド板を基板として使用	186
(2)集光機能・散乱機能を有する接着層による導光板と基板の貼合わせ	187
3.4.3 拡散機能を持った基板	187
 (1) 拡散層をセルの内側に形成した基板 	187
(2) 微粒子分散型拡散機能を有するエポキシ樹脂基板	188
(3) 高屈折樹脂と散乱粒子からなるOLED用拡散機能つき基板	188
3.4.4 集光機能を持った基板	189
	190
(1) 延伸による位相差機能付与	190
(2)液晶化合物塗布法による偏光・位相差機能の付与	192
3.4.6 防眩機能を有する基板	193
3.4.7 多機能膜の複合基板	194
3.4.8 光学補償機能を液晶セル内部に取込む方法(インセル方式)	196
3.5 プラスチック基板のまとめ	199
3.5.1 プラスチック基板材料の機能向上動向	199
3.5.2 各用途別の基板開発の状況と将来見通し	200
(1) 電子ペーパー	200
(2) LCD	200
(3) OLED	201
3.5.3 プラスチック基板を使った表示体の将来見通し	201
 (1) LCDにおける基板の複合化	201
(1) LCDにおけるインセル方式の製造	201
(3) RTR製法	201

第4章 各種光学機能素子およびフィルムの開発動向と複合化の動き	203
4.1 LCDにおけるバックライトユニット(BLU)	205
4.1.1 バックライトユニットの種類と用途	205
4.1.2 BLUを構成するフィルムシート市場	
4.1.3 バックライトユニット(BLU)に要求される性能	206
4.1.4 BLUでの機能向上、複合化 ····································	207
4.1.5 バックライト光源	207
(1) 点光源(LED)	208
(2) 面光源① 無機EL(FEL)	210
(3) 面光源② 有機EL	212
4.1.6 導光板······	213
(1)導光板+プリズムシート	214
(2)逆プリズム導光板+逆プリズムシート	215
(3)マイクロレンズ構造を介し導光板と拡散フィルムを一体化	215
(4)ダブルプリズム技術によるメイン/サブの両面表示	216
(5) 楔形状を持ったマット/プリズム導光体(MPLG)	217
(6)携帯電話用LED光源での薄肉化	218
4.1.7 集光フィルム(プリズムシート)	218
(1) プリズムシートの要求特性	218
(2) プリズムシートの概要	219
(3) エッジライト型全反射方式プリズムシート	220
(4) 頂角に極端な非対称性を導入したプリズム	221
(5) 非モワレタイプのプリズムフィルム	222
(6)マイクロレンズ方式の集光フィルム	223
(7) ホログラムによる集光フィルム	224
(8) 払取機能を有りるクリスムシート(9) 光入射端面の近傍における輝線の発生防止	227
(9) 九八羽端面の近傍におりる庫線の完全防止4.1.8 拡散フィルム(拡散板)	227
 4.1.8 拡散ノイルム(拡散板) (1) 拡散板への要求特性 	228
(1) 広訳後、の要求特性 (2) 拡散フィルムの原理	228
(2) 国際ショルニシボ連(3) 微小ビーズの表面コーティング	229
(4) 内部拡散方式	230
(5) 内部拡散と微小ビーズコーティングの組み合わせ	231
(6)光学的表面処理	231
(7) 光散乱ポリマー導光体	233
(8)ポリアミド多孔性球状粒子 ····································	233
4.1.9 反射フィルム(シート)	233
(1)多層光学フィルムによる可視光全反射フィルム	234
(2) 拡散性反射フィルムおよび反射機能を有する基板	234
4.1.10 輝度向上フィルム	235
4.2 偏光板	236
4.2.1 偏光板の市場	236
4.2.2 概要と要求性能	237
4.2.3 新しい偏光子の提案	238
(1)ワイヤーグリッド型偏光子	238

	(2)	_B膜による偏光子	240
	(3)	夜晶性材料による偏光子	240
4	. 2.	- 偏光板製品の種類	241
	(1)	反射板/半透過反射板つき偏光板 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	241
	(2)	 有円偏光板 ·······	241
	(3)	马偏光板	241
	(4)	高視野角偏光板	242
	(5)	軍度上昇フィルムつき偏光板	242
	(6)	晶度追随型光学補償フィルム付き偏光板	242
	(7)	坊眩(AG)、反射防止(AR)機能の付与	242
4			243
	(1)	扁光板の薄肉化	243
	(2)	立相差の湿度依存性を改良したセルロース誘導体フィルム	244
			245
4	. 2.	シーセルロース系以外の位相差機能を有する偏光子保護フィルム	246
	(1)	COP系	246
	(2)	マレイミド-アクリル共重合系	247
	(3)	架橋フマル酸ジエステル系	248
	(4)	復屈折を消去できる偏光子保護フィルム	248
4	. 2.	〉 斜め延伸位相差フィルムによる偏光子保護フィルム	249
	(1)	COP斜め延伸フィルム	249
	(2)	ボーイング現象(軸ズレ現象)を防止できる斜め延伸	250
	(3)	富士フイルムの斜め延伸フィルム	251
	. ,		251
	(5)	斜め延伸装置	251
4	. 2.		251
	(1)	金布型補償板付き偏光板	251
	(2)	見野角拡大機能を付与した塗布型位相差フィルム	252
	(3)	パターン状の光学軸を任意に調整できる光学補償偏光板	252
4	. 2.) 無機EL表示 (ELD) への偏光板の利用	253
4	. 2.	0 偏光板のまとめ	253
4.	3	相差フィルム・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	254
	. 3.		254
	. 3.		255
4	. 3.		256
4	. 3.		257
	(1)	STN液晶用位相差フィルム	258
			258
			258
			259
			261
4			261
			262
			262
			263

(4) COP系位相差フィルム	265
(5)非晶質ポリマー層を含む光学補償フィルム	265
(6) 正の固有複屈折性添加剤によるレタデーション制御	265
4.4 液晶性材料を使った光学補償フィルム	266
4.4.1 液晶性材料の特徴	266
4.4.2 配向基板上に高分子液晶を塗布する方法	267
(1)ディスコティック液晶	267
(2) 高分子ネマティック液晶	269
(3) コーティング時の表面欠陥の低減法	271
4.4.3 配向基板上に重合性液晶材料を塗布・重合する方法	271
(1) TN液晶用光学補償フィルム	273
(2) ハイブリッド配向による光学補償フィルム	273
(3) ディスコティック配向による逆波長分散位相差フィルム	274
(4) コレステリック配向の位相差フィルム/偏光子	274
(5) ホメオトロピック配向の重合性液晶/光学補償フィルム	275
(6) 光配向膜を用いた任意な配向を持つ位相差フィルム	277
(7) RTR製法への適用	278
(8) 重合性液晶の空気界面付近で起こる配向不良に対する対策	278
4.4.4 光配向性重合性液晶	279
(1)光配向性高分子液晶(PPLC) ····································	279
(2)シンナメート基を含むメソゲン性液晶性化合物	280
(3) UV光で配向固定できる重合性液晶材料	281
4.5 各種FPDに共通に用いられる機能性フィルム	281
4.5.1 反射防止・防眩フィルム (AR, LR, AG) ···································	281
(1) ウェットプロセスによる反射防止膜	282
(2) 凹凸形状を有する反射防止膜	283
(3) 蛾の目(モスアイ)型反射防止膜	284
4.5.2 ハードコート・防汚コート	285
(1) 干渉縞(モアレ)の発生のないハードコート剤	
(2)フッ素系の防汚コーティング材料	285
4.6 OLED用光学フィルム ······	286
 (1) 輝度向上フィルム	286
(2) コントラスト向上用位相差フィルム	287
(3) バックライトでの輝度向上フィルムの効果	287
4.7 PDP・FED用光学フィルム······	287
4.8 まとめ	289
 (1) LCD用光学フィルム	289
(1) LCD/m 元子 ジョ パンム(2) OLED用光学フィルム	289
 (2) OLLD/N/L (2) (2) (3) FPDに共通する光学フィルム	290
	291
第5章 プラスチック基板における表示体の製造	292
5.1 透明導電膜の形成(電極製造)····································	292
5.1.1 無機導電膜のドライプロセスによる成膜	292
(1) ITO導電膜	293

(2) ZnO(ZAO)導電膜	296
(3) IZO導電膜 ······	297
(4) IWO導電膜	297
(5)大気圧近傍CVDによる成膜	298
5.1.2 無機導電膜のウェットプロセスによる成膜、回路形成	300
(1) 導電材料	300
(2) 膜形成方法	301
5.1.3 有機導電膜······	302
(1)有機導電膜材料	302
(2)ウェットプロセスによる導電薄膜形成	302
5.1.4 有機導電膜と無機導電膜の積層	306
5.1.5 透明導電膜のまとめと課題	307
5.2 TFT、TFDの形成	307
5.2.1 a-Si系TFTの形成 ·······	308
 シリコン膜の低温形成	308
(2)高耐熱・低CTE基板を用いた低温a-SiTFT加工	309
(3)低耐熱基板への直接形成	309
(4)プラスチック基板上でのa-SiTFT形成の課題とその解決法	310
5.2.2 p-SiTFTの形成	312
(1) p-Siの直接形成法	312
(2) p-SiTFTの転写法による形成	314
(3) トランスファー法	321
(4)プラスチック基板上のp-SiTFTの移動度	322
5.2.3 印刷法による無機系半導体の形成方法	322
5.2.4 新規な無機系TFT (TFD) 材料······	323
(1)透明非晶質-酸化膜トランジスタ(TAOS)	323
(2) 半導体コロイダルナノドットによるTFT	324
(3) CNTによるTFT	324
(4) ZnOによるTFT	325
5.2.5 有機TFT (O-TFT)の形成	325
(1)気相法形成での課題と解決	326
(2) 印刷法によるO-TFTの製造	329
(3) 有機半導体を使った縦型半導体	333
5.2.6 新規な有機半導体	334
(1)生体高分子絶縁膜による強誘電FET型のメモリ素子	334
(2) 液晶性有機半導体	335
5.2.7 TFT形成のまとめ	337
(1) Si系TFT	· 337
(2) その他の無機系TFT	338
(3) 有機半導体	338
5.3 カラーフィルタ (CF)の形成	338
5.3.1 印刷法	340
(1) インクジェット(IJ)法	340
(2)ドライオフセット法	342
(3) 塗布法等による方法 ····································	342

5.3.2 転写法		342
(1)ガラス基板上に形成したCFの転写		342
(2)転写フィルム(ドライフィルム)を用いる方法		344
5.3.3 RGB方式以外のCF方式······		345
(1) 2色CF		345
(2) 4色以上の多色CF		345
5.3.4 CF形成バインダ材料 ····································		345
(1) ITO電極膜の抵抗上昇を防ぐCFバインダ材料		345
(2) CFバインダ材料のポストベークの必要性		346
5.3.5 CF形成の例と作製時の課題解決		346
(1)構成物質を集約したCFの製法		346
(2) プラスチック基板の伸縮を考慮した設計		347
(3) CF形成時の基板の収縮・変形防止		348
 (4) CF層の表面平滑化		348
5.4 OLEDの形成		349
5.4.1 低分子系有機EL材料および有機EL素子の形成····································		350
(1) 低分子有機EL材料 ····································		350
(2) 低分子系の有機EL素子の形成方法		350
5.4.2 高分子系有機EL材料および有機EL素子の形成		351
(1) 高分子系有機EL材料		351
(2) 高分子系有機EL素子の形成方法		352
(3) 色素分散型高分子系有機EL材料		355
5.4.3 リン光系材料と有機EL素子の形成····································		356
 (1) リン光材料 ····································		356
 (1) ジンパパイ (2) リン光材料を使ったOLED		358
5.4.4 OLEDの課題解決····································		358
 (1) 光学フィルムによる発光効率の向上		358
(1) 元子ショルムによる元九効平の向上 (2) 高いバリア性の付与		358
(2) 周マンワア ほのドチ(3) 層構成の検討		359
 (3) 層構成の後的 (4) 材料の発光効率向上 		359
(4) ガオの先元効率向上 (5) プラスチック基板における課題		360
(6) その他の課題		
5.5 その他のLCD、OLED構成材料		360
		361
5.5.1 隔壁形成材料······· 5.5.2 スペーサ······		361
5.5.2 入へ一 リ (1) スペーサ材料		363
		364
 (2) スペーサの形成法 (2) トープー こ、シーンのLEDにおけてDUた 美やた スパール 		
(3) トップエミッションOLEDにおけるBMを兼ねたスペーサ		368
5.6 配向膜····································		369
5.6.1 配向膜の役割と要求特性		369
		369
5.6.3 配向膜の成膜		370
5.6.4 配向方法の比較····································		371
5.6.5 ラビング法		372
(1) 傾斜 ラビング法		372
(2)課題、解決法	•••••	373

5.6.6 光配向膜·······	375
(1)ポリイミド系	375
(2)ポリアミド系	376
(3)シンナモイル系	376
5.6.7 カルコン系光配向膜	378
(1)カルコン基を側鎖に持つ高分子配向膜	378
(2)カルコン基を側鎖にもつポリイミド配向膜	379
(3)カルコニル基を側鎖に有する	
ポリメタクリル酸エステルとポリイミドの配向挙動	379
5.6.8 アゾ染料系光配向膜	380
(1)低分子アゾ染料系配向膜	380
(2) アゾ誘導体の重合体配向膜	381
(3) 重合性アゾ系配向膜	382
(4) アゾ誘導体を高分子で固定した配向膜	383
5.6.9 光配向による配向モードおよび配向法	384
(1) 配向方法	384
(2) 垂直配向モード	387
(3)その他の液晶の配向モード	387
5.6.10 レーザ配向法	388
5.6.11 イオンビーム配向法	388
5.6.12 ポリマー繊維ネットワークによる配向制御	389
5.6.13 パターン配向法	390
(1) マイクロパターン配向	390
(2)マルチドメイン垂直配向 (MVA)	390
5.6.14	393
(1) 無機配向膜	393
(2) 有機無機ハイブリッド配向膜	394
5.6.15 その他の配向法	394
5.6.16 配向膜のまとめ	394
5.7 液晶注入、インク注入	395
5.7.1 滴下法	395
(1)滴下法の特徴	396
(2) コーナー部の気泡発生対策	396
5.7.2 印刷法 · 塗布法 ·······	397
5.7.3 常圧充填法	397
5.8 貼合わせ・切断	398
5.8.1 シール材を使わない貼合方法······	399
5.8.2 シール材(シール剤)	400
(1)プラスチック基板用シール材	400
(2)ガラス基板用光硬化型シール材	402
(3)滴下法に対応したガラス基板用シール材	403
5.8.3 切断	406
5.9 RTR製法と枚葉製法······	406
5.9.1 RTR製法······	406
(1)LCDのパネル化	407
(2) PDLCD(PNLCD)のRTR製法	408

(3) OLEDのRTR製法	409
(4) 電子ペーパーのRTR製法	409
(5)単一基板を使ったセル化法	409
5.9.2 ガラス基板製造ラインを用いる方法	410
5.10 パネル化工程	410
5.10.1 各種光学フィルムとの貼合	410
5 . 10. 2 電極接合······	411
5.11 まとめ	412
第6章 プラスチック基板による各種FPDの開発状況	414
6.1 液晶表示体 (LCD) ····································	414
6.1.1 ガラス基板大型LCDの最近の動き	416
(1) 薄肉化	416
(2) 高視野角化	416
(3) 高コントラスト化	417
(4)応答速度の向上	417
(5)省電力化	417
6.1.2 ガラス基板モバイルLCDの最近の動き	417
(1) 薄肉化	417
(2) 高精細化	418
(3)省電力化	418
 6.1.3 ガラス基板での新規な表示方式····································	418
	418
(2) 特殊な視野効果を得る表示方法(主として三次元表示:3D)	421
 6.1.4 プラスチック基板による静止画及び半動画対応LCD開発····································	422
(1) STN-LCD	423
	423
(3) コレステリックLCD(ch-LCD)	424
(4) ゲストホスト型液晶(gh-LC)	
(5) 高分子分散型LCD(PDLCD、PNLCD) ····································	
(6) LCDPD (Liquid Crystal Dispersed Polymer Display)	429
(7) PDLCやPNLCDなどによる表示体の実例	429
(8) 強誘電LCD(FLCD)	430
6.1.5 プラスチック基板における動画対応LCD開発	431
(1) 反射型LCD(AM-LCD)	431
(2)透過型・半透過型AM-LCD	431
(3) 強誘電液晶表示体(FLCD)	432
6.2 有機EL表示体 (OLED)	434
6.2.1 OLEDの市場	436
6.2.2 ガラス基板による低分子系OLEDの開発····································	437
(1)ガラス基板による低分子系大型OLED	437
(2) ガラス基板による低分子系OLEDを使った中小型用途	440
6.2.3 ガラス基板による高分子系OLEDの開発	442
 (1) 高分子系有機EL材料を使ったOLED-TV 	442
(2) インクジェット(IJ)法による大型OLED	443
(3) ガラス基板による高分子系小型OLED	

ю.	. 2.	.4 ガラス基板によるリン光材料OLEDの開発	443
6	. 2.	5 プラスチック基板での低分子系材料によるOLEDの開発······	444
	(1))最初のプラスチック基板OLED	444
	(2)) O-TFTを使ったOLED	444
	(3))エリアカラー方式のOLED	446
	(4))フレキシブルOLED	446
	(5)) 転写法によるOLEDの製造	446
	(6)) プラスチック基板と金属フォイル封止材を使ったOLED	446
6.	. 2.	.6 プラスチック基板での高分子系材料によるOLED (PLED)の開発 ·····	447
	(1))グラビア印刷法によるOLED	447
	(2)) IJ印刷法によるOLED	448
	(3))a-酸化物TFTを使ったAM-OLED	448
	(4))OTFTを使ったAM-OLED	448
	(5))マルチフォトン構造の長寿命OLED	448
6.	. 2.	.7 プラスチック基板でのリン光材料によるOLEDの開発·······	449
6	. 2.	. 8 OLEDのカラー表示構造 ·······	451
	(1)) 三色塗り分け法とCFとの組み合わせ	452
	(2)) 色変換法(CCM)	452
	(3)) 白色光源法	453
6.	. 2.	. 9 新規なOLED構造 ····································	453
	(1))両面表示のOLED	453
	(2)) シースルーなOLED(TOLED)	453
	(3))ガラスファイバを使ったフレキシブルなOLED	453
	(4))多機能OLED電子ペーパー	150
	` '		453
6.	. 2.		453 454
6. 6.3	. 2.	. 10 OLEDのまとめ	
6.3 6.	.2. 3 '	. 10 OLEDのまとめ	454
6.3 6.	.2. 3. .3. (1)	. 10 OLEDのまとめ	454 456
6.3 6.	.2. 3. .3. (1)	. 10 OLEDのまとめ	454 456 456
6.3 6.	.2. 3.3. (1) (2)	. 10 OLEDのまとめ	454 456 456 456
6.3 6.	. 2. 3 (1) (2) (3)	10 OLEDのまとめ	454 456 456 456 457
6. 6.	. 2. 3 (1) (2) (3) (4)	10 OLEDのまとめ	454 456 456 456 457 457
6. 6. 6.	. 2. 3 (1) (2) (3) (4) . 3.	 10 OLEDのまとめ… 電子ペーパーディスプレイ (EP) 1 主要用途における動き) 電子書籍) 電子新聞) 携帯端末) その他の用途 	454 456 456 456 457 457
6.3 6.	. 2. 3 . 3. (1) (2) (3) (4) . 3. (1)	 10 OLEDのまとめ… 電子ペーパーディスプレイ(EP) 1 主要用途における動き 1 電子書籍 電子新聞 携帯端末 その他の用途 2 電気泳動方式の電子ペーパー① マイクロカプセル型電気泳動 	454 456 456 457 457 457 457
6. (6. 6.	. 2. 3 (1) (2) (3) (4) . 3. (1) (2) (3)	 10 OLEDのまとめ… 電子ペーパーディスプレイ (EP) 1 主要用途における動き) 電子書籍) 電子新聞) 携帯端末) その他の用途 2 電気泳動方式の電子ペーパー① マイクロカプセル型電気泳動) ローラブルな携帯端末) 電子ブック) 携帯電話 	454 456 456 457 457 457 457 458 459
6. (6. 6.	. 2. 3 (1) (2) (3) (4) . 3. (1) (2) (3) (4)	 10 OLEDのまとめ… 電子ペーパーディスプレイ(EP)… 1 主要用途における動き…) 電子書籍) 電子新聞) 携帯端末) その他の用途 2 電気泳動方式の電子ペーパー① マイクロカプセル型電気泳動) ローラブルな携帯端末) 電子ブック) 携帯電話) 高精細表示 	454 456 456 457 457 457 457 458 459 460
6. (6. 6.	. 2. 3 (1) (2) (3) (4) . 3. (1) (2) (3) (4)	 10 OLEDのまとめ… 電子ペーパーディスプレイ (EP) 1 主要用途における動き) 電子書籍) 電子新聞) 携帯端末) その他の用途 2 電気泳動方式の電子ペーパー① マイクロカプセル型電気泳動) ローラブルな携帯端末) 電子ブック) 携帯電話 	454 456 456 457 457 457 457 458 459 460 460
6. 6. 6.	2 . 3 (1) (2) (3) (4) (2) (4) (2) (3) (4) (5) (6)	 10 OLEDのまとめ 電子ペーパーディスプレイ(EP) 1 主要用途における動き) 電子書籍) 電子新聞) 携帯端末) その他の用途 2 電気泳動方式の電子ペーパー① マイクロカプセル型電気泳動 ·····) ローラブルな携帯端末) 電子ブック) 携帯電話) 高精細表示) 大型カラー表示) セイコーエプソンのローラブルディスプレイ ····· 	454 456 456 457 457 457 457 458 459 460 460
6. 6. 6.	2 . 3 . 3 . (1) (2) (3) (4) (2) (2) (3) (2) (3) (4) (2) (3) (4) (2) (3) (4) (2) (4) (2) (4) (2) (4) (2) (4) (2) (4) (5) (6) (3) (3) (3) (4) (3) (4) (3) (4) (3) (4) (3) (3) (4) (3) (4) (3) (4) (3) (4) (3) (4) (3) (4) (3) (4) (3) (4) (3) (4) (3) (4) (3) (4) (3) (4) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (5) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (3) (6) (6) (3) (6) (3) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6)	 10 OLEDのまとめ… 電子ペーパーディスプレイ(EP)… 1 主要用途における動き 電子新聞 電子新聞 洗帯端末	454 456 456 457 457 457 457 458 459 460 460 460 461
6. 6. 6.	. 2. 3 (1) (2) (3) (4) (2) (4) (2) (3) (1) (5) (6) . 3. (1)	 10 OLEDのまとめ 電子ペーパーディスプレイ (EP) 1 主要用途における動き 電子新聞 増子 増帯端末 その他の用途 2 電気泳動方式の電子ペーパー① マイクロカプセル型電気泳動 ローラブルな携帯端末 電子ブック 携帯電話 高精細表示 大型カラー表示 セイコーエプソンのローラブルディスプレイ 3 電気泳動方式の電子ペーパー② 垂直電気泳動方式電子ペーパー… 	454 456 456 457 457 457 457 458 459 460 460 460 461 461
6. 6. 6.	. 2. 3 (1) (2) (3) (4) (2) (4) (2) (3) (1) (5) (6) . 3. (1)	 10 OLEDのまとめ… 電子ペーパーディスプレイ(EP)… 1 主要用途における動き 電子新聞 電子新聞 洗帯端末	454 456 456 457 457 457 457 458 459 460 460 460 461 461 462
6. (6. 6.	2 . 3 . 3 . (1) (2) (3) (4) (3) (1) (3) (4) (2) (3) (4) (2) (3) (4) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (5) (1) (2) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (2) (3) (1) (2) (2) (2) (2) (3) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	 10 OLEDのまとめ 電子ペーパーディスプレイ (EP) 1 主要用途における動き 電子新聞 増子 増帯端末 その他の用途 2 電気泳動方式の電子ペーパー① マイクロカプセル型電気泳動 ローラブルな携帯端末 電子ブック 携帯電話 高精細表示 大型カラー表示 セイコーエプソンのローラブルディスプレイ 3 電気泳動方式の電子ペーパー② 垂直電気泳動方式電子ペーパー… 	454 456 456 457 457 457 457 458 459 460 460 460 461 461 462 462
6. 6. 6.	2 . 3 . 3 . (1) (2) (3) (4) (3) (1) (3) (4) (2) (3) (4) (2) (3) (4) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (5) (1) (2) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (2) (3) (1) (2) (2) (2) (2) (3) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	 10 OLEDのまとめ… 電子ペーパーディスプレイ(EP)… 1 主要用途における動き 電子書籍	454 456 456 457 457 457 457 457 458 459 460 460 460 460 461 461 461 462 462 463
6. 6. 6. 6.	2 . 3 .	 10 OLEDのまとめ… 電子ペーパーディスプレイ(EP)… 1 主要用途における動き 電子寄開 電子新聞 渡行新聞 その他の用途 2 電気泳動方式の電子ペーパー① マイクロカプセル型電気泳動 ローラブルな携帯端末	454 456 456 457 457 457 457 457 458 459 460 460 460 460 461 461 462 462 463 463
6. 6. 6. 6.	2 . 3 . (1) (2) (3) (4) (3) (4) (2) (3) (4) (5) (6) (5) (6) (2) (3) (2) (3) (3) (3) (3) (3) (3) (3) (3	 10 OLEDのまとめ… 電子ペーパーディスプレイ(EP)… 1 主要用途における動き 電子寄籍	454 456 456 457 457 457 457 457 458 459 460 460 460 460 461 461 461 462 462 463 463 464

6.3.7 トナーディスプレイ	468
6.3.8 エレクトロウェッティング	468
6.3.9 エレクトロクロミック	469
	469
	470
6.3.10 電解析出方式(エレクトロデポジション方式)	470
6.3.11 電子ペーパーのまとめ	471
	471
	472
	475
	476
	476
	477
	477
	477
	477
	478
	479
	479
	479
	481
	481
	482
	482
	482
	483
	484
	484
	484
 (3)文字入力など 	
	485
	486
	487
	487
	488
(3)タッチパネル	488
あとがき	489
略 語 表	490
参考文献	492
付録 主要なプラスチック基板の特性	