半導体用およびプリント配線板用の高分子材料

― 各社の技術・製品動向 ―

2008年8月発行

定価52,250円 (消費税込み)

住ベリサーチの調査研究レポート

住ベリサーチ株式会社 技術調査部 〒140-0002 品川区東品川2-5-8 天王洲パークサイドビル16F TEL 03-5462-7036 FAX 03-5462-7040

目 次

			頁
緒		言	1
	_		
第	1章	市 場 動 向	
	1.1	電子産業の市場動向	
	1.1.	·····	
	1.1.	— - · - · · · · · · · · · · · · · · · ·	
	1.1.	<u> </u>	
	1.2	関連主要製品の市場動向	
	1.2.		
	1.2.		
	1.2.3		
	1.2.4	· · · · · ·	
	1.3	半導体の市場動向	
	1.3.		-
	1.3.		
	1.4		
	1.4.		
	1.4.2	2 世界市場······	13
笙	2 章	半導体、プリント配線板の技術動向	14
-	2.1	半導体の技術動向	
	2.1.		
	(1		
	(2		
	(3		
	2.1.		
	(1		
	(2		
	(3		
	(4		
	2.1.		
	2.2	半導体実装技術の動向·······	
	2.2.		
	(1		
	(2		
	(3		

2.2.2	3 次元実装技術の動向	20
(1)	スタックドCSPからSiPへ	20
(2)	技術開発動向	22
(3)	シリコン貫通孔技術	23
2.3 材	料技術と課題	24
2.3.1	小型化・薄型化への対応	24
2.3.2	耐熱性と膨張係数の課題	25
2.4 プ	リント配線板の技術動向	26
2.4.1	概要	26
2.4.2	技術ロードマップ	27
2.4.3	実装技術動向および課題	28
(1)	基板の熱膨張率と曲げ弾性係数	28
(2)	基板材料の課題・要求特性	28
(3)	材料技術動向	29
(4)	フレキシブル基板の技術動向	29
第3章 半	導体封止用高分子材料の動向	30
3.1 エ	ポキシ樹脂およびその他の樹脂	30
3.1.1	半導体パッケージの構成とエポキシ樹脂	30
3.1.2	主なエポキシ樹脂	30
3.1.3	市場業界動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32
3.1.4	耐熱性の向上	36
3.1.5	強靭性の向上	38
3.1.6	高熱伝導化	42
3.1.7	低収縮化の検討	44
3.1.8	低粘度化	45
3.1.9	硬化性、密着性などの特性向上	47
3.1.10	LED用エポキシ樹脂	48
3.1.11	ポリイミド、シリコーン樹脂、熱可塑性樹脂	51
3.2 I	ポキシ樹脂封止材料	54
3.2.1	封止材料の市場動向と技術課題	54
3.2.2	封止の目的と材料構成	54
3.2.3	技術開発の歴史と現状	57
3.2.4	技術課題	59
3.2.5	耐はんだ対応材料の動向	62
3.2.6	環境対応材料の開発動向	65
3.2.7	先端パッケージ用封止材料	69
3.2.8	高熱伝導封止材	75
3.2.9	透明エポキシ封止材料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	77

3.3 半	導体成形技術の動向	78
3.3.1	トランスファー成形	78
3.3.2	圧縮成形······	79
3.3.3	射出成形·····	81
3.4 エ	ポキシ樹脂用硬化剤と硬化促進剤の動向	82
3.4.1	フェノール系硬化剤	82
(1)	最近の代表的組み合わせ	82
(2)	分子量分布集約ノボラック	83
(3)	耐はんだ性に難燃性付与の硬化剤	84
3.4.2	酸無水物系硬化剤	85
(1)	種類と用途	85
(2)	開発動向	85
3.4.3	アミン硬化剤	86
(1)	種類と特性、用途	86
(2)	開発動向	86
3.4.4	硬化促進剤	87
(1)	アミン化合物······	87
(2)	イミダゾール化合物	87
(3)	リン系化合物	88
3.4.5	潜在性促進剤······	89
(1)	マイクロカプセル化および包接技術	89
(2)	開発動向	90
3.4.6	硬化触媒によるTgレス化····································	92
	5状封止材の動向····································	
	ッケージの変遷と液状封止材	
4.2 液	状封止材の概要と動向	
4.2.1	種類	
	材料の基本構成	
4.3 グ	ラブトップ材料	
4.3.1	要求特性·····	
	手法および技術動向	
(1)	貯蔵安定性の改善	
(2)	耐湿性	
(3)	チキソトロピー性	
(4)	低弾性率と低熱膨張化	
4.4 ア	ンダーフィル材料の動向	
4.4.1	アンダーフィル技術の特徴	
4.4.2	要求特性	97

4.4.3	キャピラリーアンダーフィル材料の構成と動向	. 99
(1)	材料構成	. 99
(2)	流動特性とボイド ····································	. 99
(3)	硬化性の向上	100
(4)	低応力化	100
(5)	高熱伝導化	102
4.4.4	鉛フリーはんだおよびLow-k膜対応······	103
4.4.5	プリアプライドタイプ	104
4.4.6	WL-CSP用 ······	106
4.4.7	リペアラブル・アンダーフィル材	106
4.5 液	状封止材の各社代表グレード	108
第5章 半	≚導体チップコーティング材料の動向	109
5.1 表	面保護コーティング材料	109
5.1.1	ポリイミドとポリベンズオキサゾールの概要	109
5.1.2	ネガ型感光性ポリイミドの動向	111
(1)	特徴	111
(2)	PAA/光酸発生剤/架橋剤による改良	111
(3)	ポリアミド酸/光塩基発生剤系と低温イミド化	112
(4)	耐熱性と機械特性に優れたネガ型ポリイミド	112
5.1.3	ポジ型感光性ポリイミドの動向	113
(1)	特徴	113
(2)	ポリアミド酸/溶解抑止剤系	113
(3)	オルソニトロベンジルエステル系	114
(4)	フェノール水酸基含有ポリアミド酸系	
(5)	ポリエステルイミド	115
5.1.4	ポリベンズオキサゾール	115
(1)	特徴	115
(2)	ポリベンズオキサゾールの実用化	117
(3)	半脂環式感光性PBO ······	118
(4)	工程簡略化および新規溶解抑止剤	118
(5)	低温環化PBO·······	119
5.1.5	低温硬化タイプの開発動向	120
(1)	住友ベークライト	120
(2)	東レ	121
(3)	日立化成工業	121
(4)	京セラケミカル	121
(5)	旭化成エレクトロニクス	122
5.1.6	各社の代表グレード	122

5.2 反	応現像画像形成による感光性化技術	122
5.2.1	エンジニアリングプラスチックによるRDP······	122
5.2.2	ポリ乳酸によるRDP······	124
5.3 ウ	エハレベルパッケージ再配線用樹脂	124
5.3.1	構造および技術動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	124
(1)	カシオ計算機とルネサステクノロジ	125
(2)	古河電気工業	126
(3)	富士通	126
(4)	米Tessera Technologies社·····	126
(5)	ザイキューブ	127
5.3.2	再配線用樹脂	127
(1)	日本電気と住友ベークライト	127
(2)	京セラケミカル	127
(3)	旭硝子	127
(4)	旭化成	127
(5)	東レ	128
(6)	ローム・アンド・ハース電子材料	128
5.3.3	ウエハレベルパッケージの新技術	128
(1)	ウエハレベルMEMSパッケージ	128
(2)	印刷工法によるウエハレベルパッケージ	129
第6章 半	^坐 導体用ペースト、フィルム	130
6.1 ダ	イボンディングの技術動向	130
6.1.1	ダイボンディング接続法の種類と特徴	130
6.1.2	パッケージ動向と樹脂接合材料への要求・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	130
6.2 ダ	イボンディングペースト	131
6.2.1	概要および課題	131
(1)	概要	131
(2)	技術課題	132
6.2.2	耐はんだリフロー性ペーストの開発	132
(1)	技術手法	132
(2)	技術開発動向	133
6.2.3	高熱伝導ペーストの開発	134
(1)	技術手法	134
(2)	技術開発動向	134
6.2.4	印刷ダイボンドペーストの開発	135
(1)	技術要求	135
(2)	開発動向	135
6.2.5	各社代表グレード	137

6.3 ダ	゚イボンディングフィルム	138
6.3.1	概要	138
(1)	構造と市場	138
(2)	要求特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	138
6.3.2	ポリイミド系の動向	139
(1)	日立化成工業	139
(2)	三井化学	140
6.3.3	エポキシ系の動向	140
(1)	山形大学	140
(2)	日立化成工業	141
(3)	リンテック	141
(4)	住友ベークライト	142
6.3.4	ダイシング・ダイボンディングー体型フィルム	142
(1)	信頼性向上と工数低減	142
(2)	技術開発動向	142
6.4 バ	「ックグラインドテープとダイシングテープ····································	146
6.4.1	BGテープ······	146
(1)	概要と市場	146
(2)	メーカーの開発動向	146
6.4.2	DCテープ······	147
(1)	DCテープの概要と市場······	147
(2)	メーカーの開発動向	148
6.5 実	装用フィルム	
6.5.1	LOCテープ ······	149
(1)	LOCテープの概要 ······	149
(2)	メーカーの開発動向	149
6.5.2	TABおよびCOFテープ·······	150
(1)	構造と市場	150
(2)	フィルム素材の動向	
(3)	フィルムメーカーの動向	153
(4)	技術開発動向	155
	音間絶縁膜の動向	
	SI多層配線技術と層間絶縁膜	
7.1.1	伝送の遅延問題	157
	層間絶縁膜の低誘電率化	
	ow-k膜の開発経緯····································	
	導体メーカーの適用動向	
	IEC、NECエレクトロニクス	
	<i>/=</i>	
(3) 富	雪士通	159

(4)	レネサステクノロジ	160
(5) A	MD、IBM·····	160
(6) T	SMC(台)	160
(7) U	JMC(台)	160
(8)	その他	160
7.4 村	料の開発動向	161
7.4.1	有機ポリマー	161
(1)	架橋ポリフェニレン系	161
(2)	ポリイミド系	162
(3)	ポリアリルエーテルによるLow-k化 ······	163
(4)	ベンゾオキサゾール	164
(5)	フッ素系ポリマー	164
(6)	その他の有機ポリマー	165
7.4.2	シリカガラス系	166
7.4.3	ボラジン系高分子	166
7.4.4	ポーラスシリカ系	168
7.4.5	メチルシルセスキオキサン系	170
第8章 昇	星方導電性材料、等方導電材料	173
8.1 類	!方導電フィルム	173
8.1.1	ACFの市場と技術動向 ······	173
(1)	ACFの市場······	173
(2)	接合の原理	173
(3)	材料の構成および要求特性	174
8.1.2	技術開発動向	175
(1)	日立化成工業	175
(2)	ソニーケミカル&インフォメーションズ	176
8.1.3	その他の開発動向	178
8.2 異	!方導電接着剤·······	182
8.2.1	特徴	182
8.2.2	技術開発動向·····	182
8.3 等	方性導電接着剤 ·······	184
8.3.1	市場と要求特性	184
(1)	目標は「はんだ代替」	184
(2)	導電性接着剤の構成	185
8.3.2	特性向上検討の動向	186
(1)		
\ = /	バインダー樹脂	186
(2)	バインダー樹脂····································	186 186

第9章 車	載用電子材料の動向	191
9.1 自	動車産業とカーエレクトロニクス	191
9.1.1	カーエレクトロニクスの動向	191
9.1.2	車載半導体市場が伸びる	192
9.2 半	尊体への要求特性と開発動向⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅	193
9.2.1	車載用半導体への要求特性	193
9.2.2	エポキシ封止材の開発動向	195
9.3 車	載用基板の要求特性と開発動向	195
9.3.1	車載用基板への要求動向	195
9.3.2	車載用基板の技術開発動向	196
第10章 璟	環境対応対策材料	200
10.1 地	球環境問題の現状と対応状況	200
10.1.1	環境問題の歴史と現状	200
10.1.2	環境規制と対応状況	201
10.2 難	燃系エポキシ樹脂	204
10.2.1	リン含有型	204
10.2.2	ビフェニルアラルキル型	204
10.2.3	その他の難燃対応エポキシ	205
10.3 難	燃対応樹脂	207
10.3.1	ポリベンゾオキサジン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	207
10.3.2	アミノトリアジンノボラック樹脂	207
10.3.3	ホスファゼン誘導体	208
10.4 環	境対応封止材料	209
10.4.1	自己消火性エポキシ樹脂組成物 ······	209
10.4.2	封止材メーカーの開発動向	211
10.5 環	境対応型プリント配線板	214
10.5.1	概要	214
10.5.2	配線板用環境対応エポキシ樹脂の開発	
10.5.3	難燃剤・難燃化技術の動向	215
10.5.4	基板メーカーのハロゲンフリー代表的グレード	217
10.5.5	FPCのハロゲンフリー化····································	
10.6 リ	サイクル・リワーク技術およびバイオ由来素材	
10.6.1	リワーク可能な光架橋硬化樹脂 ······	218
10.6.2	エポキシ樹脂のリサイクル	
10.6.3	熱可塑プリント基板のリサイクル	219
10.6.4	植物由来のエポキシ樹脂	
10.6.5	3 官能アクリレートの分解	
10.6.6	バイオマス由来熱硬化性樹脂・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	220
10.6.7	亜 臨界水によるFRPの分解····································	221

第11章 低誘電損失材料の動向	222
11.1 低誘電率、低誘電正接の必要性	222
11.1.1 プリント配線板における伝送損失の理論	222
11.1.2 材料の対応技術	223
11.2 低誘電化の開発歴史と現状	224
11.3 エポキシ樹脂の低誘電率化	224
11.3.1 低誘電率化の理論	224
11.3.2 技術開発動向	225
(1) 新規高芳香族性ビフェノール/エポキシ	225
(2) 芳香族オレフィンオリゴマーによる改質	225
(3) チタニアハイブリッドによる低誘電化	225
(4) β-メチル基置換型エポキシ樹脂····································	226
(5) ポリフェニレン骨格の導入	226
11.4 ポリイミドの低誘電化	
11.4.1 低誘電率化の理論	
11.4.2 技術開発動向	
(1) フッ素化ポリイミド	227
(2) フルオレン骨格による低誘電化	228
(3) アダマンタン骨格による低誘電化	
(4) 多孔質ポリイミドによる低誘電化	
11.5 ポリフェニレンエーテルによる低誘電化	
11.5.1 変性PPE······	
11.5.2 熱硬化型PPE···································	
11.6 ポリオレフィンによる低誘電化	
11.6.1 ポリオレフィン共重合体	
11.6.2 環状オレフィン	
11.7 液晶ポリマーによる低誘電化	
11.8 空気内包、粒子などによる低誘電化	
11.8.1 空気内包メタセン	
11.8.2 中空粒子	
11.8.3 有機ウイスカー	
11.8.4 シリカ多孔体	
11.9 マレイミドスチリル樹脂	
11.10 多官能芳香族ビニル	
11.11 ベンゾシクロブテン····································	
11.12 各社の代表的な低誘電基板特性	238
ᄨᇽᇰᆇᅠᆔᇧᆡᇑᄻᇆᄼᆥᆉᄼ	225
第12章 プリント配線板の動向	
12.1 プリント配線板の種類	
12.1.1 絶縁体の種別と構造による分類	
12.1.2 主な基板製造技術	239

12.2 市場動向と技術動向	239
12.2.1 市場動向と基板メーカー	239
12.2.2 技術動向と要求特性····································	241
12.3 基材の動向	243
12.3.1 ガラスクロスの技術動向	243
12.3.2 超極薄ガラスクロスの動向	244
12.3.3 極薄プリプレグの開発	246
12.4 フィルム基材の動向	247
12.4.1 耐熱性フィルム	247
12.4.2 芳香族アラミド繊維	247
12.4.3 液晶ポリマー	248
12.4.4 フッ素繊維シート	250
12.4.5 PBO繊維シート····································	251
12.5 マトリックスレジンの動向	251
12.5.1 プリント配線板への要求特性とマトリックスレジン····································	251
12.5.2 フェノール樹脂基板	252
12.5.3 エポキシ樹脂基板	253
12.5.4 ポリイミド、ビスマレイミドトリアジン樹脂基板······	255
12.5.5 ベンゾシクロブテン樹脂	259
12.5.6 シアネート樹脂	259
12.5.7 フッ素系樹脂	260
12.5.8 ポリフェニレンエーテル樹脂	261
12.5.9 その他の樹脂	262
12.6 低熱膨張基板の開発動向	264
12.6.1 低熱膨張の目的	264
12.6.2 開発動向	264
12.7 耐熱性基板の技術動向	266
12.7.1 耐熱性基板の必要性	266
12.7.2 開発動向	266
12.8 高熱伝導基板·······	267
12.8.1 高熱伝導の必要性	267
12.8.2 開発動向	267
12.9 超極薄多層基板······	269
12.10 環境対応配線板	269
第13章 ビルドアップ基板、インターポーザ基板他の動向	
13.1 ビルドアップ多層プリント配線板	
13.1.1 概要および市場動向	
13.1.2 ビルドアップ多層プリント配線板の種類と特徴······	
(1) 導体パターンの形成方法	271

(2)	プロセスの種類と特徴	272
(3)	コア材料の動向	274
13.1.3	ビルドアップ多層材料の要求動向	274
(1)	ガラス転移点(Tg) ·······	274
(2)	誘電率	274
(3)	誘電正接	274
(4)	熱膨張係数 (CTE)	275
(5)	はんだ耐熱性······	275
(6)	銅箔引き剥がし強さ	275
13.1.4	代表的ビルドアップ基板の技術動向	275
(1)	熱硬化性樹脂法	275
(2)	樹脂付き銅箔による方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	277
(3)	めっき法によるその他の方法	277
(4)	導電性ペーストを用いる方法	278
(5)	組み合わせによる方法	280
(6)	全層一括積層方法	281
(7)	その他ビルドアップ基板メーカー	283
13.1.5	ビルドアップ基板用樹脂の動向	283
(1)	味の素「ABFシリーズ」 ·····	283
(2)	ポリエーテルエーテルケトン	284
(3)	ポリイミド	285
(4)	樹脂付き銅箔	287
(5)	絶縁樹脂の低誘電化	288
13.2 1	′ンターポーザ用パッケージ基板の技術動向 ······	289
13.2.1	概要	289
13.2.2	インターポーザの動向	289
(1)	市場動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	290
(2)	テープ構造インターポーザの技術動向	290
(3)	リジッド構造インターポーザと要求特性	291
13.2.3	インターポーザの開発動向	293
(1)	NEC	293
(2)	凸版印刷	294
(3)	産業技術総合研究所	294
(4)	デンソーとNECエレクトロニクス	295
(5)	富士通インターコネクトテクノロジーズ	296
(6)	沖電気工業	296
(7)	松下電子部品・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	296
13.2.4	インターポーザ用基板材料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	296
(1)	ビスマレイミドトリアジン	296
(2)	三井化学	297

(3) タムラ化研	· 297
(4) 東洋紡績	· 298
13. 2 . 5 インターポーザ用積層板の動向	· 298
(1) 住友ベークライト	· 298
(2) 日立化成工業	· 299
(3) 松下電工	. 300
(4) インターポーザメーカー	. 300
13.3 部品内蔵基板の動向	. 301
13.3.1 概要	. 301
13.3.2 開発動向	. 303
13.3.3 開発実用化動向	. 303
13.3.4 内蔵基板用材料の開発動向	. 308
13.4 放熱性基板の動向	. 309
13.4.1 高発熱化する電子デバイス	. 309
13.4.2 放熱基板、材料の開発動向	. 310
(1) 高熱伝導樹脂の開発	. 310
(2) 各社放熱基板の開発動向	. 311
(3) 放熱シート、基材などの開発	· 314
第14章 フレキシブル基板の動向	· 317
14.1 概要	· 317
14.1.1 市場動向 ····································	
14.1.2 分類と参入メーカー	
14.2 FPCの構造と最近の動向····································	
14.3 FPCの課題と要求特性 ····································	· 320
14.3.1 FPCの課題····································	· 320
14.3.2 FPCの要求特性 ····································	· 321
14.4 ベースフィルムの技術動向	· 322
14.4.1 フィルムの種類と特性	· 322
14.4.2 ポリイミドフィルム	· 322
(1) 東レ・デュポン「カプトン」	· 323
(2) カネカ「アピカル」	· 324
(3) 宇部興産「ユーピレックス」	· 324
14.4.3 液晶ポリマー	· 324
(1) ジャパンゴアテックス	· 324
(2) クラレ	
	· 325
(3) (旧)帝人アバンストフィルム	
(3) (旧)帝人アバンストフィルム	· 325
	· 325

(2) 東洋紡績	326
(3) 東レ・デュポン	327
14.5	2 層FPCの動向 ····································	327
(1)	新日鐵化学	328
(2)	東洋紡績	328
(3)	東レ	329
(4)	三井化学	329
(5)	東海ゴム工業・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	329
(6)	米デュポン社	329
(7)	信越化学工業	329
14.6	3 層FPCの動向 ····································	330
(1)	京セラケミカル	330
(2)	日本メクトロン	330
(3)	ニッカン工業	330
14.7	FPC基板の動向	331
(1)	住友ベークライト	331
(2)	ソニーケミカル	331
(3)	松下電工	332
(4)	フジクラ	332
14.8	新技術FPCの動向	332
14.9	FPC基材の動向	333
14.10	カバーコート材の動向	335
14.10.	1 カバーコート材料の概要	335
14.10.	2 感光性カバーレイの開発動向	335
14.11	リジッドフレックス基板の動向	337
14.12	極薄プリント配線板の動向	338
14.13	光・電気複合フレキシブル配線板	339
吉	語	341
多考文	献	343