ポリマーナノコンポジット

― 飛躍する高機能ナノテク材料とその評価・用途の動向 ―

2007年9月発行

定価104,500円(消費税込み)

住ベリサーチの調査研究レポート

住ベリサーチ株式会社 技術調査部 〒140-0002 品川区東品川2-5-8 天王洲パークサイドビル16F TEL 03-5462-7036 FAX 03-5462-7040

はじめに	1
第1章 ポリマーナノコンポジット材料用ナノ素材	2
1.1 ポリマー	2
1.1.1 リビングラジカル重合、立体特異性リビングラジカル重合によるポリマー	2
1.1.2 リビングアニオン重合によるポリマー	2
1.1.3 リビングカチオン重合によるポリマー	3
1.1.4 リビング配位重合によるポリマー	4
1.1.5 開環メタセシス重合によるポリマー	4
1.1.6 連鎖重縮合によるポリマー	4
 1.1.7 高次制御重縮合によるポリマー	5
1.1.8 精密高分子技術プロジェクト	5
1.2 金属、セラミックスのナノ粒子素材	6
1.2.1 ナノ粒子の合成と機能化技術プロジェクト	6
1.2.2 大気圧プラズマによるジルコニアナノ粒子	8
1.2.3 ジルコニアナノ粒子の分散液	8
1.2.4 高周波熱プラズマによる金属ナノ粒子	9
1.2.5 AIN球状複合粒子 ····································	10
1.3 カーボン系ナノ素材	10
1.3.1 単層CNT	10
1.3.2 多層CNT······	11
1.3.3 フラーレン	11
1.3.4 カーボン系ナノ粒子のトピックス	12
1.3.5 カーボンナノファイバー	13
1.4 シリカ系 ナノ粒 子	13
1.4.1 コロイダ ルシリカ	13
1.4.2 シルセスキオキサン	14
1.4.3 多孔質シリカ	14
第2章 ポリマーコンポジット材料	16
2.1 ポリマー/ポリマー系 ナノコンポジット材 料	16
2.1.1 コポリマー	16
2.1.1.1 ラジカルリビング重合によるコポリマー	16
2.1.1.2 アニオンリビング重合によるコポリマー	17
2.1.1.3 アニオンリビング重合による共重合用モノマー	18
2.1.1.4 開環メタセシス重合によるコポリマー	19
2.1.1.5 連鎖重縮合によるコポリマー	19
2.1.1.6 プラズマ重合によるコポリマー <参考 >	20

目 次

2.1.1.7	オレフィン系コポリマー<参考>	21
2.1.1.8	温度応答型コポリマー	22
2.1.1.9	ロッドコイル型コポリマー	25
2.1.1.1) 両親媒性コポリマー	26
2.1.2 グ	ラフト重合	28
2.1.2.1	塩化ビニルのグラフト重合	28
2.1.2.2	ポリアミドのグラフト重合	28
2.1.2.3	リビングラジカル重合によるグラフト重合	29
2.1.2.4	リビングラジカル重合による高分子微粒子へのグラフト	30
2.1.2.5	フッ素系樹脂への光グラフト重合	31
2.1.2.6	フッ素系樹脂への放射線グラフト重合	31
2.1.2.7	放射線グラフト重合で化学修飾したポリシラン	32
2.1.3 I	ラストマー	33
2.1.3.1	PVDF/アクリルゴム系 ······	33
2.1.3.2	架橋型エラストマー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
2.1.3.3	1,3-シクロヘキサジエン(CHD)/ブタジエンのトリブロック共 重 合 体	34
2.1.3.4	低立体規則性ポリプロピレン	36
2.1.3.5	ポリウレタン-ロタキサンエラストマ-	36
2.1.3.6	ポリカプロラクトン/アラミド系	37
2.1.3.7	ナイロン6(PA6)/変性ブチルゴム(BIMS)共重合体	38
2.1.4 ポ	リマーアロイ	39
2.1.4.1	エポキシアロイ	39
2.1.4.2	PPEのアロイ	41
2.1.4.3	PBTのアロイ	42
2.1.4.4	ポリベンゾオキサジン/ポリイミドアロイ	43
2.1.4.5	ポリマーアロイ用相溶化剤	44
2.1.4.6	ポリマーアロイのトピックス	45
2.1.4.7	ポリマーアロイのシミュレーションソフト	46
2.1.5 結	晶性制御	47
2.1.5.1	結晶性一結晶性重合体の結晶化挙動(1)	47
2.1.5.2	結晶性一非晶性重合体の結晶化挙動(2)	48
2.1.5.3	結晶性および他の要因による構造制御	48
2.1.5.4	配向による結晶性制御	50
2.1.6 ナ	ノ粒子、ナノシート	51
	コポリマーナノ粒子	51
2.1.6.1		
2.1.6.1 2.1.6.2	コアシェル型ナノ粒子	52
2.1.6.1 2.1.6.2 2.1.6.3	コアシェル型ナノ粒子 ナノカプセル	52 54
2.1.6.1 2.1.6.2 2.1.6.3 2.1.6.4	コアシェル型ナノ粒子 ナノカプセル ナノ粒子の集積	52 54 56
2.1.6.1 2.1.6.2 2.1.6.3 2.1.6.4 2.1.6.5	コアシェル型ナノ粒子 ナノカプセル ナノ粒子の集積 ナノ多層シート	52 54 56 57

2.1.8 ゲルーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	61
2.2 ポリマー/金属、金属化合物粒子系ナノコンポジット材料	64
2.2.1 高分子/金属錯体蒸気(乾式)	64
2.2.2 高分子ゲル/金属粒子(湿式)	65
2.2.3 水溶性高分子/金属イオン(湿式)	66
2.2.4 ターチオフェンチオレート/金属	66
2.2.5 デンドリマー/ 金 属	67
2.2.6 ポリイミド/金属ナノ粒子	68
2.2.7 CR39/銀ナノ粒子	69
2.2.8 層状の結晶性高分子/金属	69
2.2.9 高分子ナノシート/金ナノ粒子	70
2.2.10 刺激応答性粒子/金属	71
2.2.11 両親媒性高分子/金属、金属錯体	71
2.2.12 DNA/金属 ······	72
2.2.13 延伸PI/銀 ······	72
2.2.14 配位高分子/金属錯体系	73
2.2.15 核に金属錯体を持つ星型ポリマー	74
2.2.16 表面積層型ナノ金属錯体	74
2.2.17 環状ヘキサペプチド/金属錯体	74
2.2.18 高分子微粒子/金属錯体系	75
2.2.19 ポリアミド/銀/ヨウ素	75
2.2.20 樹脂/金属ナノ配線	75
2.3 ポリマー/カーボン系	77
2.3.1 ポリマー/カーボンブラック	77
2.3.1.1 ゴム/カーボンブラック	77
2.3.1.2 ポリウレタン/カーボンブラック	77
2.3.1.3 ポリエチレン/カーボンブラック	78
2.3.1.4 ポリオレフィン/カーボンブラック	78
2.3.1.5 PMMA/PEO/カーボンブラック	81
2.3.2 ポリマー/カーボンナノチューブ	81
2.3.2.1 導電性高分子/CNT	82
2.3.2.2 イオン性液体/CNT ······	83
2.3.2.3 樹脂/CNTコンポジット材料の量産状況	84
2.3.2.4 透明樹脂/CNT ·······	84
2.3.2.5 樹脂/CNT複合材料 ······	85
2.3.2.6 ポリイミド/CNT	85
2.3.2.7 ゴム/CNT	86
2.3.2.8 ゴム/CNT系補強メカニズム	86
2.3.2.9 PC/CNT	87
2.3.2.10 DNA/CNT	88

2.3.2.11 ポリマー/CNT関連 進行中の研究 ······	88
2.3.3 ポリマー/カーボンナノホーン、カーボンナノポッド	89
2.3.3.1 樹脂/カーボンナノホーン	89
2.3.3.2 樹脂/カーボンナノポッド	· 89
2.3.4 ポリマー/フラーレン	· 90
2.3.4.1 ポリメタクリル酸フランエステル/フラーレン	· 90
2.3.4.2 導電性高分子/フラーレン	· 91
2.3.4.3 樹脂/フラーレン複合体	· 91
2.3.4.4 DNA/フラーレン	• 92
2.3.4.5 ホストゲスト錯体	· 92
2.3.4.6 アクリル系樹脂/フラーレン誘導体	93
2.3.4.7 フラーレン誘導体	• 94
2.3.4.8 フラーレンポリマー <参考 >	. 95
2.3.5 樹脂 /カーボンナノファイバー、炭素繊維	• 96
2.3.5.1 樹脂/CNF複合材料 ────────────────────────────────────	• 96
2.3.5.2 ポリウレタン/CNF	• 96
2.3.5.3 不飽和ポリエステル/CNF ······	• 97
2.3.5.4 エポキシ、ポリイミド/CNF	· 98
2.3.5.5 ポリプロピレン/CNF	. 99
2.3.5.6 フラン樹脂/CNF	100
2.3.5.7 エポキシ/CNF	100
2.4 ポリマー/ 無機 系 ナノコンポジット材 料	101
2.4.1 ポリマー/シリカ	101
2.4.1.1 エポキシ/シリカ微 粒子	101
2.4.1.2 フェノール/シリカ	103
2.4.1.3 アクリル系ポリマー/シリカ	104
2.4.1.4 ウレタン/シリカ	107
2.4.1.5 その他ポリマー/シリカ	108
2.4.2 ポリマー/Si系 ハイブリッド材 料	110
2.4.2.1 ポリマー/シルセスキオキサン	110
2.4.2.2 ポリマー/その他 Si系 ハイブリッド材 料	113
2.4.2.2.1 エポキシ/Si系 ハイブリッド	113
2.4.2.2.2 フェノール/Si系 ハイブリッド	115
2.4.2.2.3 ポリイミド/Si系 ハイブリッド	116
2.4.2.2.4 アクリル/Si系ハイブリッド	117
2.4.2.2.5 ウレタン/Si系 ハイブリッド	119
2.4.2.2.6 エラストマー/Si系 ハイブリッド	120
2.4.2.2.7 ヒドロキシプロピルセルロース/Si系 ハイブリッド	121
2.4.3 ポリマー/クレイ	121
2.4.3.1 エポキシ/クレイ	121

2.4.3.2 アクリル/クレイ	125
2.4.3.3 フェノール/クレイ	126
2.4.3.4 ポリオレフィン/クレイ	127
2.4.3.5 熱可塑性樹脂/クレイ	130
2.4.3.6 ハイドロゲル/クレイ	134
2.4.4 ポリマー/その他の無機系材料	135
2.4.4.1 ポリマー/アルミナ	135
2.4.4.2 ポリマー/酸 化 チタン	137
2.4.4.3 ポリマー/ジルコン、チタン酸 バリウム、酸 化 セリウム	139
2.4.4.4 ポリマー/水酸化マグネシウム、炭酸カルシウム	142
第3章 コンポジット関連プロセス製造技術	145
3.1 せん断、圧力	145
3.1.1 三本ロール	145
3.1.2 微量型高せん断成形加工機	145
3.1.3 押出機	146
3.1.3.1 2軸押出機(1)	146
3.1.3.2 2軸押出機(2)	147
3.1.3.3 2軸押出機の改造	147
3.1.3.4 押出機の開発状況	148
3.1.4 低温せん断	149
3.1.4.1 二軸押出機による低温せん断混練	149
3.1.4.2 プレスによる固相せん断混練	150
3.1.4.3 混練機による低温固相せん断	150
3.1.5 混練機	151
3.2 リアクティブプロセッシング	152
3.2.1 ポリアミド系	152
3.2.2 ポリオレフィンの動的脱架橋/動的架橋	154
3.2.3 PPE/EGMA、四軸押出機 ······	155
3.2.4 ポリブチレンサクシネート/クレイ	155
3.2.5 鎖延長剤/PET<参考>	155
3.2.6 水素化アクリロニトリル/ブタジエン共重合体	156
3.2.7 PBT/反応性ポリマー	156
3.2.8 リアクティブプロセッシング 用 添 加 剤	157
3.3 相分離と自己組織化	159
3.3.1 PEO/液晶性PMA ······	159
3.3.2 フィンガリング不安定性	161
3.3.3 自己組織化アルキメデスタイリング	162
3.3.4 階層構造フィルム	163
3.3.5 相分離構造からのパターン形成	164

3.3.6 ミクロ相分離による多孔性材料	166
3.3.7 光重合誘起相分離	166
3.3.8 ミクロ相分離構造の光制御	167
3.4 電場、磁場の印可	168
3.4.1 エポキシ/カーボンナノフィラーに電場	168
3.4.2 アクリル系ブロック共重合体に電場	168
3.4.3 スチレン系ブロック共重合体に磁場	169
3.4.4 液晶/非晶ブロック共重合体に磁場	169
3.4.5 アクリル系/有機結晶に磁場	170
3.4.6 ポリスチレン/CNTに磁場	170
3.4.7 ポリスチレン微粒子/シリカ粒子の配列を磁場で	171
3.4.8 アクリル系樹脂/酸化亜鉛に磁場	171
3.4.9 高分子に高磁場<参考>	172
3.5 超臨界利用	172
3.5.1 各種樹脂のCO2による発泡	172
3.5.2 ポリスチレン系ブレンドの超臨界CO₂発泡 ······	173
3.5.3 PP/クレイナノコンポジットの超臨界CO₂発泡 ······	174
3.5.4 超臨界CO₂によるポリマーの表面処理	174
3.5.5 超臨界CO₂と押出機による熱可塑性樹脂の混練······	175
3.5.6 超臨界CO₂と有機溶媒の併用によるポリスチレン/CNT	175
3.5.7 ナノカプセルのプラスチック添加剤	176
3.5.8 超臨界乾燥、超臨界延伸による材料調整<参考>	176
3.5.9 超臨界水熱合成法による高分子/ナノ粒子系材料	177
3.6 プロセス装置	177
3.6.1 マイクロリアクターーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	177
3.6.2 湿式分散機	179
3.6.3 機械的複合化装置	179
3.6.4 気相化学的手法のための装置	180
3.6.5 エアロゾルデポジション法(AD法)用装置<参考>	180
第4章 ポリマーナノコンポジットの加工技術	182
4.1 ポリマーナノコンポジットの微細加工	182
4.2 ポリマーナノコンポジットを鋳型とした材料の創製	185
4.2.1 シリカ多孔質体	185
4.2.2 ブロックコポリマーを鋳型とするメソポーラスシリカの創製	186
4.2.3 ポリマーナノコンポジットの焼成による材料の創製	187
4.3 ナノ加工装置	187
4.3.1 熱リソグラフィー応 用ナノ加 工 装 置	187
4.3.2 電子ビームリソグラフィによる三次元ナノ加工	188
4.3.3 レーザーマイクロナノ加工	188

第5章 ポリマーナノコンポジットの表面、界面、薄膜	189
5.1 表面処理	189
5.1.1 無機/樹脂コンポジットの表面処理に関する問題点	189
5.1.2 無機/樹脂コンポジットの表面処理剤による処理効果の違い	189
5.1.3 樹脂の直接表面処理によるポリイミド/金属コンポジット材料	190
5.1.4 樹脂/セラミックス系の表面処理例	191
5.1.5 有機化処理無機材料によるナノコンポジットの例	191
5.1.6 新しい手法による表面改質の例	191
5.2 界面	193
5.2.1 ポリペプチド系LB膜	193
5.3 親水性·撥水性材料 ····································	194
5.3.1 シリコーンアクリル共重合体薄膜	194
5.3.2 アクリルシリコーン/シリカ複合材料	194
5.3.3 フッ素系ブロック共重合体	195
5.3.4 フッ素系高分子ナノ粒子による表面処理	195
5.3.5 微細孔による撥水性発現	196
5.4 薄膜	196
5.4.1 アクリル/ジルコニア ナノ薄膜	196
5.4.2 交互吸着法	197
5.4.3 アクリルアミド系 共重合体薄膜	197
5.4.4 フッ素 化ポリイミド薄 膜	198
5.4.5 ポリジメチルシロキサン薄膜	198
第6音 ポリフーナノコンポジットのナノ計測は街	200
	200
6.1 TEMT	200
0.1.1 TEMT	200
6.1.2 TEMT 0 テノコンホンット応用例	200
6.1.3 TEMT+SCFシミュレーションの研究	203
$0.2 \forall w \in \mathbb{N}$	204
0.2.1 ホリステレン/ ホリメテルメダクリレート来 (1)	204
0.2.2 小リスノレン/ 小リアノルスダリリレードボ(2) 6 3 NMP	205
0.5 NMR 6 A ポリフーン推诿したの可留度ななどにていた。	203
5.4 小ツ× ̄/ 煮破コノハノツドの同牌反放別 元による計測技術	200
0.5 小ツ×一枚科の物电丁府廠広による計測技術	207
0.0 17 回引 別 仅 11 11 12 12 12 12 12 12 12 12 12 12 12	208
0.0.1 电丁刀兀和修広による向刀丁按百介山の計測 6.6.2 cimcにとるポリエエレンノポリマミドを甲五の計測	208
0.0.2 SIMSによる小リエテレン/ 小リアミト 永 乔 田 の 計 測	209

第7章	ポリマーナノコンポジットのナノ性能評	? 価技術	210)
-----	--------------------	-------	-----	---

7.1 ナノカ学物性	210
7.1.1 その場観察と試験	210
7.1.2 AFMによるナノレオロジーカ学特性	211
7.2 トライボロジー	213
7.2.1 ナノトライボロジー	213
7.2.2 ナノコンポジット材 料 のトライボロジー 評 価	214
7.3 ガスバリア性	216
7.4 難燃性	218
7.4.1 エポキシ/水酸化マグネシウム系の難燃性評価	218
7.4.2 熱可塑性樹脂/金属水和物系ナノコンポジットの難燃性評価	219
第8章 ポリマーナノコンポジットのエレクトロニクス、光関連分野への応用	220
8.1 低誘電率材料	220
8.1.1 プラズマ共重合法	220
8.1.2 多孔性ポリイミド/ポリイミド系	221
8.2 高誘電率材料	222
8.2.1 樹脂/チタン酸バリウム系	222
8.3 光硬化材料	224
8.3.1 F₂レジスト向けTFE−ノルボルネン誘導体共重合体 ······	224
8.3.2 ArFレジスト向けノルボルナンラクトン構造のアクリレート3種の3元共重合体	224
8.3.3 低誘電率ネガ型感光性樹脂	225
8.3.4 光酸化誘起重縮合によるフラーレンーポリイミドコンポジット	225
8.3.5 エンーチオール硬化型ハイブリッド材料	226
8.3.6 UVナノインプリント用 有 機 無 機 ナノコンポジット材 料	226
8.3.7 共重合ポリイミドのレジスト材料	226
8.4 実装用材料	227
8.4.1 ダイボンディング材 料フィルム	227
8.4.2 ナノペースト	229
8.4.3 異方導電材料ACF ····································	231
8.4.4 透明導電材料	232
8.4.5 電波吸収材	232
8.4.5.1 エポキシ/ナノ金属金属酸化物複合微粒子	232
8.4.5.2 電磁抑制シートの磁性粉末に対するシラン処理とシート物性<参考>	233
8.4.6 実装基板用接着剤	233
8.4.6.1 フレキシブル銅張積層板用接着剤	233
8.4.6.2 実装基板用接着剤	234
8.5 電子デバイス	235
8.5.1 有機半導体関連	235
8.5.2 電子ペーパー	238
8.5.3 センサー	239

8.5.4 光電変換素子	· 240
8.5.5 導電性材料	241
8.5.6 ジブロックコポリマーテンプレートによるパターン形 成 利 用	242
8.5.6.1 ハードディスク	242
8.5.6.2 自己組織化法パターンの半導体への利用	242
8.6 電池	243
8.6.1 燃料電池	243
8.6.1.1 フッ素樹脂系電解質(イオン交換膜)	243
8.6.1.2 PEFC燃料電池 ·······	244
8.6.1.3 DMFC燃料電池 ·······	246
8.6.1.4 燃料電池の電極	· 247
8.6.2 リチウムニ次電池	248
8.6.3 有機ラジカル電池	249
8.6.4 プラスチック太 陽 電 池	249
8.6.4.1 プラスチック太 陽 電 池(1)	249
8.6.4.2 プラスチック太 陽 電 池 (2)	250
8.6.4.3 プラスチック太陽電池(3)<参考>	250
8.7 一般 電気 絶縁 材料用途向けポリマーナノコンポジット	251
8.7.1 電力機器用絶縁材料	251
8.7.2 成形材料	253
8.7.3 電線被覆材料	254
8.7.3.1 ABSセンサーケーブル	254
8.7.3.2 スイッチング電 源トランス対 応 電 線	255
8.7.3.3 エナメル線絶縁皮膜材料および電子回路用フィルム想定材料	255
8.8 光学材料	257
8.8.1 透明材料	257
8.8.1.1 PMMA/シリカ透明材料	257
8.8.1.2 アクリル系光散乱ポリマー導光体	258
8.8.1.3 アクリル系透明材料	259
8.8.1.4 ポリイミド系 透明材料	260
8.8.1.5 ポリオレフィン系 透明材料	260
8.8.1.5.1 シクロオレフィンコポリマー	260
8.8.1.5.2 ノルボルネン系コポリマー	260
8.8.1.6 ポリマー/バイオナノファイバーコンポジット	261
8.8.2 屈折率制御材料	261
8.8.2.1 ゼロ配向複屈折性光学用樹脂材料	261
8.8.2.2 屈折率制御	262
8.8.2.3 高屈折率材料	· 262
8.8.2.3.1 PHEMA/TiO ₂	262
8.8.2.3.2 エポキシ/TiO ₂	263

8.8.2.4 低屈折率ナノ多孔性薄膜	263
8.9 光回路用材料	264
8.9.1 プラスチック光ファイバー (POF)材料	264
8.9.2 光導波回路用材料	265
8.9.2.1 アクリル/エポキシ系	265
8.9.2.2 PMMA/シリカ系	265
8.9.2.3 ポリイミド共重合体	266
8.9.2.4 ポリイミド/CNT	267
8.9.2.5 ポリイミド共重合体/銀ナノ粒子	267
8.9.3 フォトニック結晶、非線形光回路用材料	268
8.9.3.1 酸化セリウム/ポリマー系	268
8.9.3.2 PMMA/アゾ色素	268
8.9.3.3 光硬化樹脂/金属錯体	268
8.9.3.4 フォトニック結 晶 関 連 材 料	269
8.10 光機能材料	270
8.10.1 ポリイミド系発光材料	270
8.10.2 光応答性材料	270
8.10.2.1 センサー、フォトニックペーパー	270
8.10.2.2 構造色ゲル	271
8.10.2.3 光応答性コポリマー	272
8.10.2.3.1 色素担持コポリマー	272
8.10.2.3.2 光応答性コンポジット	273
8.10.3 光学活性ポリマー	273
8.10.4 応力発光材料	274
8.10.5 光触媒材料	274
8.10.5.1 光触媒性微粒子分散液	275
8.10.5.2 光触媒コート剤	275
8.10.5.3 光触媒コート用成分傾斜膜<参考>	276
第9章 ポリマーナノコンポジットのバイオ、医療分野への応用	277
9.1 概要	277
9.1.1 ポリマーナノコンポジットのバイオ、医療分野への応用状況	278
9.1.2 実用化に近いポリマーナノコンポジットによるDDS開発研究例	279
9.1.2.1 高分子ナノ粒子DDSの開発例(1)	279
9.1.2.2 高分子ナノ粒子DDSの開発例(2)	280
9.1.2.3 高分子ミセルDDSの開発例	280
9.1.2.4 バイオナノカプセルによるDDS<参考>	281
9.1.2.5 高分子ハイドロゲルDDSの開発例 ······	282
9.1.3 ポリマーナノコンポジットによるDDS研究例	283
9.1.3.1 コアコロナ型高分子ナノスフェアDDS	283

9.1.3.2 温度応答性DDS	284
9.1.3.3 リポソームによるDDS	284
9.1.3.4 天然高分子由来の高分子材料によるDDS	285
9.1.4 遺伝子DDS	285
9.2 生体適合材料による医療デバイス	287
9.2.1 抗血栓性材料	287
9.2.1.1 ポリメタクリロイルオキシエチルホスホリルコリン (MPCポリマー) 関連	287
9.2.1.2 セグメント化ポリウレタン	288
9.2.1.3 樹脂/ナノカーボン	289
9.2.1.3.1 樹脂/CNT	289
9.2.1.3.2 イオン性液体/ナノカーボン	290
9.2.2 人工骨	291
9.2.2.1 コラーゲン/アパタイト系(1)	291
9.2.2.2 コラーゲン/アパタイト系(2)	292
9.2.2.3 PE/酸化チタン ······	293
9.3 各種医療・バイオ用複合材料	293
9.3.1 三元複合材料による経皮材料	293
9.3.2 再生治療用材料細胞培養、細胞シート	295
9.3.3 バイオ用ゲル	296
9.3.3.1 ナノゲル	296
9.3.3.2 アクリルアミド型ゲル	297
9.3.3.3 高圧法によるコンポジットゲル	297
9.3.3.4 PEG系ナノゲル	297
9.3.4 各種バイオ分野用ナノコンポジット材料	298
9.3.4.1 PEG系トリブロック共 重 合 体 ······	298
9.3.4.2 ヘテロ2官能性PEG	299
9.3.4.3 ナノファイバー系	299
9.3.4.4 PEG/デンドリマー	300
9.4 DNA関連材料 ·······	300
9.4.1 DNA/シリカ	300
9.4.2 DNA/金属	301
9.4.2.1 金属含有DNAワイヤー	301
9.4.2.2 DNA/金属(2)	301
9.4.2.3 DNA/金属(3)	302
9.4.3 DNA/カーボンナノチューブ	302
9.4.3.1 DNA内包CNT ······	302
9.4.3.2 DNA/CNT系	303
9.4.4 DNAチップ	303

第10章	ポリマーナノ	/コンポジットの)構造材料へ	の応用		304
------	--------	----------	--------	-----	--	-----

10.1 ポリマーナノコンポジット材 料メーカーの開 発 例	304
10.2 構造部材用ポリマーナノコンポジットの研究例	305
10.2.1 ポリアミド/反応性ポリオレフィン	305
10.2.2 アクリル/シリカまたはポリカーボネート/シリカ	305
10.2.3 樹脂/ナノフィラー系の特性	306
10.2.4 PC/PBT系	307
10.2.5 PP/クレイ発泡構造体······	307
10.2.6 タイヤ向 けナノコンポジット材 料	308
10.2.6.1 ゴム/カーボンブラック	308
10.2.6.2 シリカタイヤ用変性溶液重合SBR/シリカ	309
10.2.7 航空宇宙用複合材料	310
10.2.7.1 ポリイミド/炭素繊維	310
10.2.7.2 エポキシ/カーボンナノチューブ	311
10.2.7.3 次世代航空機用構造部材創製・加工技術開発関連<参考>	311
第11章 ポリマーナノコンポジットの塗料、接着剤、分離膜への応用	313
11.1 接着剤	313
11.1.1 半導体装置用接着剤	313
11.1.2 自動車用接着剤	313
11.1.3 導電性接着剤	314
11.1.4 解体性接着剤	314
11.1.5 生体用接着剤	314
11.2 塗料、コーティング剤	315
11.2.1 水系建築用塗料	315
11.2.2 水性塗料(1)	316
11.2.3 水性塗料(2)	316
11.2.4 PP系塗料 ·······	317
11.2.5 各種樹脂コンポジット塗料	317
11.3 分離膜	318
11.3.1 ポリイミド/Agを焼成した分離膜	318
11.3.2 ポリイミド/Pdを焼成した分離膜	318
11.3.3 ポリイミド/シリカ系 気体 分離 膜	319
11.3.4 ポリアリーレンエーテル系イオン交換膜	319
11.3.5 PVA/オリゴシラン系 液体分離膜 ·······	320
第12章 省エネルギー、リサイクル、環境対応ポリマーナノコンポジット	321

퐈	12早 1	コエネルキー、リザイクル、環境対応ホリマーナノコンホシット	321
	12.1 ポ!	Jマーナノコンポジット製造工程の省エネルギー対策 ······	321
	12.1.1	ポリプロピレン共重合体の製造工程	321
	12.1.2	PP/炭素繊維材料	321
	12.1.3	樹脂/金属複合化技術	322

	12.2 リサイクル関連	323
	12.2.1 汎用樹脂のリサイクル	323
	12.2.2 発泡PS ······	324
	12.2.3 植物由来剛直材料	324
	12.2.4 リサイクル技術 <参考>	325
	12.3 生分解性材料	326
	12.3.1 ポリ乳酸系	326
	12.3.2 PBS関連 ······	329
	12.3.3 一般生分解性材料	333
	12.4 環境対応材料	336
	12.4.1 ノンハロゲン材 料	336
	12.4.2 有害物質捕集材料	339
	12.4.2.1 ゲル状捕集剤	339
	12.4.2.2 キトサン系吸着剤	340
	12.4.2.3 光触媒関連有害物質処理材料	340
2 2 2	第13章 ポリマーナノコンポジットの安全性	342
	13.1 2005年度ナノテクノロジーの社会受容促進に関するプロジェクト概要	342
	13.2 ナノマテリアルのリスク評価に関する状況	342
	13.3 ナノ材料の安全性評価	343
1	第14章 終 言	345
H	略 語 表	346
ηγ	参考文献	349