高密度化を担う

電子部品埋め込み基板の最新動向

2007年1月発行

定価104,500円(消費税込み)

住ベリサーチの調査研究レポート

住ベリサーチ株式会社 技術調査部 〒140-0002 品川区東品川2-5-8 天王洲パークサイドビル16F TEL 03-5462-7036 FAX 03-5462-7040

	頁
第1章 はじめに	•• 1
第2章 受動部品・能動部品埋め込みプリント回路基板の概要(要約)	3
第3章 キャパシタ埋め込み回路基板	10
3.1 埋め込みキャパシタの必要特性	10
3.2 埋め込みキャパシタ用誘電体材料	14
3.2.1 薄膜キャパシタ用材料	18
3.2.1 A 誘電体薄膜······	18
 (1) 酸化タンタル(Ta₂O₃) 	19
(2) BST (BaSrTiO ₃) \cdots	20
(3) チタン酸ストロンチウムSrTiO ₃ (STO)	21
(4) チタン酸ジルコン酸ランタン鉛PbLa(Zr, Ti)O₃(PLZT)	21
3.2.1 B 誘電体薄膜の改良······	22
 温度係数の改善	22
(2) リーク電流及び電圧制御性(tunability)の改善	24
(3) 薄膜形成の低温化	27
(4) 経時変化の改善	28
(5) 電極の影響	29
3.2.2 セラミック厚膜キャパシタ	31
3.2.2A 強誘電性厚膜を用いた埋め込みキャパシタ	32
(1) デユポンの"Interra TM " Ceramic	32
(2) エアロゾルデポジション法(AD法)	33
3.2.2 B セラミックチップキャパシタ	36
(1) 誘電体材料の改良	36
(2) サイズ効果(Size Effect)	41
(3) BaTiO ₃ の物理的特性	43
(4) 多層セラミックキャパシタ(MLCC)における残留応力	44
3.2.3 ポリマーフィルムまたはシート(フィラーなしフィルム)	46
3.2.3 A エポキシ樹脂(FR-4、FR-5)	47
(1) サンミナ社の製品	47
(2) オーク三井テクノロジーズ	49
(3) シーメンス社における検討	52
(4) ヒューレットパッカードにおける検討	54
(5) 耐熱性エポキシ樹脂(FR-5)	55

目 次

3.2.3	B.ポリイミド樹脂	56
3.2.4	セラミックーポリマーナノコンポジット(フィラー充填フィルム)	57
3.2.4	A ナノコンポジットの設計理論式	58
(1)	Nielsenの複合則	58
(2)	Jayasundere and Smithの式	58
(3)	対数混合則	59
(4)	パーコレーション理論	59
3.2.4	B ナノコンポジット製品の研究開発·····	59
(1)	オーク三井テクノロジーズの製品	59
(2)	3Mにおける開発	61
(3)	ヴァンチコ社、モトローラ社の開発	63
(4)	ポリクラッド社の製品	65
(5)	デュポンにおける開発	65
(6)	日立化成工業	66
(7)	Isola社	69
3.2.4	C その他のメーカー及び研究機関における開発研究	70
(1)	松下電工	70
(2)	住友金属エレクトロデバイスの開発研究	72
(3)	東レにおける開発	72
(4)	日本ペイント	74
(5)	TDKのハイブリットプロセス	75
(6)	KAISTにおける開発研究	76
(7)	東京工業大学と日立製作所の研究開発	78
3.2.4	D セラミックーポリマーコンポジット材料の改良研究	78
(1)	マトリックス樹脂に関する研究	78
(2)	硬化触媒の検討	80
(3)	母材樹脂による誘電特性の相違	82
(4)	分散剤の検討	82
(5)	フィラー混合法の検討	84
3.2.4	E 導体・半導体-ポリマーコンポジット	85
3.2.4	F セラミックーポリマーコンポジットキャパシタに関する特許	89
3.3 4	Fャパシタ埋め込みプリント回路基板の製法と特性評価	92
3.3.1	チップキャパシタ埋め込み回路基板の製法	92
(1)	SIMPACT方式(松下)	93
(2)	B ² it方式·····	94
3.3.2	薄膜キャパシタ埋め込み回路基板の製法	96
(1)	陽極酸化Taを用いた半導体パッケージ(新光電気工業)	96

(2)	部品内蔵多層シートデバイス(松下電気産業)	· 98
3.3.3	厚膜キャパシタ埋め込みプリント回路基板の製法	· 99
(1)	デュポンのペースト焼成法	• 99
(2)	エアロゾル蒸着による埋め込み法	101
(3)	B ² it工法による誘電体ペーストキャパシタの埋め込み法	102
(4)	モトローラ社における製法	102
3.3.4	フィルムキャパシタ埋め込み回路基板の製法	102
(1)	サンミナ社、オーク三井テクノロジーズの方法	102
(2)	三菱電機のキャパシタ埋め込み法	105
3.3.5	セラミック樹脂コンポジットキャパシタ埋め込み回路基板の製法	107
(1)	日立化成工業の製造法	107
(2)	松下電工の製法	108
(3)	デュポンの製造技術	109
(4)	オーク三井テクノロジーズの製法	110
(5)	日本ペイントの製法	111
(6)	住友金属エレクトロデバイスの製法(評価用基板)	111
(7)	メザニンキャパシタ(モトローラ)	112
(8)	B ² it TM による製造プロセス	113
第4章 推	£抗体埋め込みプリント回路基板·······	114
4.1 埋	め込み抵抗体の必要性・・・・・	114
4.2 埋	め込み抵抗体材料	115
(1) 担	気抗値の設計	115
(2) 担	氐抗温度係数(TCR)	116
4.2.1	薄膜抵抗······	116
(1)	Ohmega-ply® ·····	116
(2)	Mac Dermid M-Pass TM ······	117
(3)	Shipley Insite TM	118
(4)	Gould $TCR^{\text{\tiny (B)}} \cdot TCR^{+TM}$	119
4.2.2	厚膜抵抗	120
(1)	デュポンInterra TM Ceramic	120
(2)	アサヒ化学研究所の材料	122
(3)	武蔵工業大学の材料	123
4.2.3	埋め込み抵抗体に関する特許	124
	[°] リント回路基板への抵抗体の埋め込みプロセス	
4.3.1	チップ抵抗埋め込みプロセス	126

—iii—

(1)	B ² it構成·····	126
(2)	SIMPACTによる埋め込み	126
4.3.2	薄膜抵抗部品の埋め込みプロセス	126
(1)	グールドエレクトロニクスのプロセス	126
(2)	オメガプライテクノロジーズのプロセス	128
(3)	シプレーのInsiteプロセス	129
4.3.3	厚膜抵抗体埋め込みプロセス	130
(1)	デュポンのプロセス(厚膜焼成抵抗)	130
(2)	モトローラのプロセス(ポリマー抵抗プロセス)	
(3)	B ² it法 ·····	134
4.3.4	トリミング技術・・・・・	135
第5章 1	′ンダクタ埋め込みプリント回路基板	137
5.1 埋	め込みインダクタの必要特性	137
5.1.1	埋め込みインダクタの種類及び性能	137
(1)	インダクタの種類	137
(2)	Qファクター	138
5.2 イ	ンダクタ材料・・・・・・	140
5.2.1		140
(1)	銅箔	140
(2)	導電性インク材料	142
5.2.2	平面インダクタ用基板及び封止材料	144
(1)	低ロス基板	144
(2)	インダクタ封止材料	144
5.2.3		
	埋め込みインダクタに関する特許	146
	埋め込みインダクタに関する特許	
5.3 イ	埋め込みインダクタに関する特許 ンダクタ埋め込み回路基板の製法	149
5.3 イ 5.3.1	埋め込みインダクタに関する特許 ンダクタ埋め込み回路基板の製法 Cu回路を用いた方法	149 149
	埋め込みインダクタに関する特許 ンダクタ埋め込み回路基板の製法 Cu回路を用いた方法 日立化成工業の方法	149 149 149
5.3.1	埋め込みインダクタに関する特許 ンダクタ埋め込み回路基板の製法 Cu回路を用いた方法 日立化成工業の方法 三菱電機の方法	149 149 149 149
5.3.1 (1)	埋め込みインダクタに関する特許 ンダクタ埋め込み回路基板の製法 Cu回路を用いた方法 日立化成工業の方法	149 149 149 149
5.3.1 (1) (2)	埋め込みインダクタに関する特許 ンダクタ埋め込み回路基板の製法 Cu回路を用いた方法 日立化成工業の方法 三菱電機の方法	149 149 149 149 150
5.3.1 (1) (2) (3)	埋め込みインダクタに関する特許 ンダクタ埋め込み回路基板の製法 Cu回路を用いた方法 日立化成工業の方法 三菱電機の方法 TDKの方法	149 149 149 149 150
5.3.1 (1) (2) (3) (4)	埋め込みインダクタに関する特許 ンダクタ埋め込み回路基板の製法 Cu回路を用いた方法 日立化成工業の方法 三菱電機の方法 TDKの方法 カシオ計算機の方法	149 149 149 149 150 150 151

第6章	受動部品埋め込みプリント回路基板の設計(熱システム及びコスト)	152
6.1	受動部品埋め込み基板の熱設計	152
6.1.	1 熱設計におけるデザインルール	152
6.1.	2 熱機械疲労の検討	155
6.2	受動部品埋め込み基板のシステム設計	158
6.2.	1 日本CMKのシステム	158
6.2.	2 ITRI (台湾) のシステム	160
6.3	コスト設計	163
6.3.	1 コストモデル例	163
6.3.	2 オメガプライテクノロジーにおけるコスト分析	165
6.3.	3 グールドにおけるコスト分析	166
6.3.	4 ライフサイクルコスト	166
(1) デザインコスト	166
(2	 設備投資など	167
(3	う 納期関連コスト	167
(4	シ 認定費用など	167
(5	i) 製造責任関連コスト	167
<u> </u>		
第7章	受動部品埋め込みプリント回路基板の応用例	
7.1	デカップリングキャパシタ	
(1)	ヒューレットパッカード社の検討例	
(2)	松下電器産業の検討例	
(3)	電源ノイズ低減へのスルーホールの影響(IMEC-Chent大学)	172
7.2	携帯電話機	174
(1)	モトローラにおける適用例	174
7.3	RF (Radio Frequency) フィルタ	176
(1)	東芝における検討例	176
7.4	ターミネーション(インピーダンスマッチング)	178
(1)	反応性ターミネーション	170
		1/0
(2)	LANにおけるクロストークの低減	
(2) 7.5	LANにおけるクロストークの低減	

(2) その他WLANモジュールなど	182
7.6	埋め込み受動部品応用製品に関する特許	183
(1		
(2		
(1		100
第8章	能動素子埋め込みプリント回路基板	196
8.1	能動素子埋め込み回路基板の必要性	196
8.2	各社の能動部品基板埋め込み方式	198
(1	STD-V方式(GE-東芝)	198
(2	SIMPACT [™] (松下電器産業)	199
(3	B ² it [™] 、BossB ² it [™] 実装技術(DTCT)(ウエイスティー)	202
(4	極薄チップ内蔵技術(新光電気工業)	202
(5	JSP (Jet Pointing System)によるチップ埋め込み(デンソー)	204
(6	EWLP(Embedded Wafer Level CSP)(カシオ計算機、日本シイエムケイ)	206
(7	Fraunhofer IZM (ドイツ)の技術	208
(8	AIST法(ソニー)	209
(9	FSBC法(Satakunta Polytechnic)	211
8.3	能動素子 (ICチップ) 埋め込みプリント回路基板関係特許	213
(1		213
(2		217
第9章	市場関係	220
9.1	受動部品埋め込み基板の市場	
	1 (AED)の市場	
•••		221
第10章	5 今後の課題と展望	225
略語	表	228
参考:	と 献	230