プラズマ技術の最新パラダイム

- その材料技術とのコラボレーションを目指して -

2006年5月発行

定価104,500円(消費税込み)

住ベリサーチの調査研究レポート

住ベリサーチ株式会社 技術調査部 〒140-0002 品川区東品川2-5-8 天王洲パークサイドビル16F TEL 03-5462-7036 FAX 03-5462-7040

第	1章		緒	言	1
第	2章		プラズ	マ―プラズマディスプレイの場合	4
	2.1	蛍	も光灯の)構造	4
	2.2	Р	DPの原	理、構造	4
	2.3	7	ⁱ ィスプレ	~イの性能比較	5
	2.4	Р	DPの今	後	5
	2.	4.1	開発0	の体制	5
	2.	4.2	1 市場の	の動き	6
	2.	4.3	; 技術開	開発最新状況の具体例 (NHK)	6
	2.5	Ρ	DPに使	われる高分子材料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
第	3章		表面改	【質のためのプラズマ源	8
	3.1	ブ	ラズマ技	支術に関する用語	8
	3.2	ブ	ラズマ冒	電源	11
	3.3	ブ	ラズマ語	诊断	13
	3.	3.1	分光言	計測	13
	3.	3.2	・ プラズ	、マのパラメータと手法	13
	3.	3.3	プラズ	、マのパラメータと実際の装置	14
	3.	3.4	プラズ	、マシミュレーション	16
	3.4	ブ	゚゚ラズマた	が高分子材料に及ぼす作用	18
	3.5	高	5分子表	€面改質後の評価 ─────────────────────────────	19
	3.	5.1	接触角	角	19
	3.	5.2	XPS((ESCA)	19
	3.	5.3	FT-IR	{	20
	3.	5.4	電子顕	頢 微 鏡 、AFM ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	20
	3.	5.5	志 表 面 物	物性	20
	3.	5.6	ラマン	/分光	21
第	4章		大気圧	グロー放電プラズマ(大気圧低温プラズマ、APG)	22
	4.1	ナ	気圧グ	ロー放電プラズマの歴史	22
	4.2	ナ	、気圧グ	ロー放電プラズマの概要	24
	4.	2.1	従来の	の大気圧グロー放電プラズマが、不安定であった理由	24
	4.	2.2	大気	王グロー放電の安定条件	24
	4.	2.3	3 大気日	王グロー放電安定の理由	24
	4.	2.4	従来の	の大気圧プラズマとの違い	25
	4.	2.4	.1 バリ	ア誘電体放電(DBD)との違い	25
	4.	2.4	.2 ⊐□	ナ放電との違い	25

目

次

4.3 大気圧グロー放電プラズマの研究進捗	25
4.3.1 大気圧グロー放電プラズマの研究進捗(1)	25
4.3.1.1 端緒となった研究	26
4.3.1.2 APGメカニズムの考察	27
4.3.1.2-1 放電電流の測定	27
4.3.1.2−2 発光スペクトルの測定	27
4.3.1.2−3 グロー放電開始、消失電圧の測定	28
4.3.1.3 電極形状を変えた場合のAPG	28
4.3.1.4 He以外のガスによるAPG他	29
4.3.1.5 APGによるプラズマ重合膜(低圧グロー放電法との比較)	
4.3.1.6 APGの応用	
4.3.2 大気圧グロー放電プラズマの研究進捗(2)	
4.3.2.1 APGとDBDとの違いの検証	
4.3.2.2 カーボンナノチューブ合成のためのAPG	
4.3.3 大気圧グロー放電プラズマの研究進捗(3)	37
4.3.3.1 名古屋大 マイクロ波励起大気圧プラズマ装置	37
4.3.3.2 東北大の研究	
4.3.3.3 埼玉大 導電セラミックスをトリガーとする大気圧非平衡プラズマ	
4.3.4 大気圧グロー放電プラズマの研究進捗(4)	
4.3.4.1 フランスUniversite Paul SabatierのMassinersの研究	
4.3.4.2 英国University of SurreyのShentonの研究	
4.3.4.3 国際 ワークショップ	
4.4 大気圧グロー放電プラズマの実用化状況	
4.4.1 大気圧グロー放電プラズマの実用化状況1(積水化学の状況)	
4.4.2 大気圧グロー放電プラズマの実用化状況2(松下電工の状況)	41
4.4.3 大気圧グロー放電プラズマの実用化状況3(コニカミノルタの状況)	42
4.4.4 大気圧グロー放電プラズマの実用化状況4(国内研究機関、企業での状況)	
4.4.5 大気圧グロー放電プラズマの実用化状況5(ダウコーニングの状況)	
4.5 大気圧グロー放電プラズマの今後の展望	43
第5章 マイクロプラズマ	
5.1 マイクロプラズマの概要	
5.1.1 マイクロプラズマの状況	
5.1.1.1 マイクロプラズマ全般の状況	
5.1.1.2 PDP最新技術の状況	
5.1.2 マイクロプラズマの実例	
5.1.2.1 マイクロプラズマの実例	
5.1.2.2 極微細プラズマ(ナノプラズマ)の実例	
5.1.3 マイクロプラズマの特徴と研究の方向	
5.2 マイクロプラズマの研究状況	48

5.2.1 マイクロプラズマの研究例(1)		48
5.2.2 マイクロプラズマの研究例(2)	マイクロプラズマジェットによるシリコンナノコーンの生成…	49
5.2.3 マイクロプラズマの研究例(3)	液滴を用いたマイクロプラズマ	50

第6章 パルス変調プラズマ	52
6.1 連続プラズマの問題解決としてのパルス変調プラズマ	52
6.2 パルス変調プラズマのエッチング	54
6.2.1 パルス変調ECRプラズマの場合	54
6.2.2 使用ガスを考慮したパルス変調ICPプラズマの場合	55
6.3 パルス変調プラズマのCCD素子製造プラズマプロセスへの応用	56
6.4 パルス変調プラズマのCVDへの応用(1)	58
6.5 パルス変調プラズマのCVDへの応用(2)	58
6.6 パルス変調プラズマのCVDへの応用(3)	59
第7章 中性粒子ビームとその応用	
7.1 装置と中性化のメカニズム	60
7.2 中性粒子ビームの応用 (1)ゲート電極のエッチング	62
7.3 中性粒子ビームの応用 (2)ゲート窒化膜の改質	63
7.4 中性粒子ビームの応用 (3)量子ドット	63
7.5 中性粒子ビーム装置の関連特許と装置の開発	64
第8章 プラズマイオン注入法(PBII:Plasma Base Ion Implantation)	65
8.1 PBIIの概要	65
8.2 RFパルスバイアス同時印可型PBII	66

8.3	バイポーラパルスPBII	67
8.4	同軸真空アークコーティング	69
8.5	負イオンビームのイオン注入・イオンビーム蒸着法への応用	70
8.6	極低エネルギーイオンビーム技術と材料開発への応用	71
8.7	配管内壁の処理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	73
8.8	コンビナトリアル手法による、イオン注入条件の設定(参考)	74

第9章 高周波プラズマとマイクロ波プラズマの最新動向

(ICP、CCP、表 面 波、ECRプラズマ、ヘリコン 波プラズマ)	75
9.1 高周波プラズマ最新動向	75
9.1.1 選択的運動量制御型プラズマ(茨城大)	76
9.1.2 内挿アンテナICP(東芝)	76
9.1.3 SLA-ICP(アネルバ)	77
9.1.4 2周波重畳マグネトロンCCP(東芝)	78
9.1.5 NLDプラズマ(アルバック)	79
9.1.6 ガスパフプラズマ(三菱電機)	79

9.2 マイクロ波 帯 プラズマ最 新 動 向	80
9.2.1 表面波プラズマ、RLSAマイクロ波励起プラズマ	80
9.2.2 表面波プラズマの例	81
9.2.2.1 リングスロット型アンテナによるマイクロ波励起表面波プラズマ	81
9.2.2.2 スロットアンテナのプラズマ源(東芝)	81
9.2.3 体積波プラズマ	82
9.2.4 ギャップ放電によるマイクロ波励起大気圧プラズマ	83
9.2.5 マイクロストリップラインを用いたマイクロ波励起大気圧プラズマ	83
9.2.6 小型システムのマイクロ波励起大気圧プラズマ	84
9.3 ECRプラズマの最新動向	84
9.3.1 ECR装置の改良	84
9.3.2 UHF帯ECRプラズマ	85
9.3.3 ECR装置のパルスバイアス	85
9.4 ヘリコン波プラズマの最新動向	86
9.4.1 ヘリコン波 エッチングCVD 複 合 機	86
9.4.2 大容量へリコン波励起の装置	86
9.5 大面積プラズマ	87
9.5.1 低インダクタンス内部アンテナ方式	87
9.5.2 ラダー型電極方式	88
第10章 電子ビーム励起プラズマ(EBEP:Electron Beam Excited Plasma)	90
10.1 中部地域コンソーシアムの研究開発	90
10.2 EBEPの装置(日本電子の装置)	91
10.3 EBEP関連(名古屋大の研究)	91
10.3.1 パルス変調型電子ビーム励起プラズマ	91
10.3.2 コンパクトDCコントロール電子ビーム励起プラズマ	92
第11章 コロナ放電処理	93
11.1 パルスコロナ放電法	93
11.2 流体安定化コロナ放電	94
11.3 コロナトーチ	95
11.4 櫛形電極によるコロナ放電処理	95
第12章 熱プラズマ	96
12.1 熱プラズマについて	96
12.1.1 熱プラズマの生成	96
12.1.2 熱プラズマの特徴と応用	~ 7
12.2 熱プラズマにおけるパルス変調(無機材研)	97
12.2 熟ノフスマにおけるハルス変調(無機材研)	
12.2 熱ノラスマにおけるハルス変調(無機科研)	97

12.2.3 無機材研 (1)ZnO関連	99
12.3 無機材研 (2)電池関連	00
12.4 ナノ粒子合成(東工大の研究)	02
12.5 高周波誘導熱プラズマの初期点火改善	04
12.6 プラズマジェット 広島大のプロジェクト	05
12.7 放電プラズマ焼結 SPS······ 10	06
12.7.1 放電プラズマ焼結装置	07
12.7.2 応用 (1)傾斜機能材料	07
12.7.3 応用 (2)MEMS分野への成形品	08
12.8 プラズマ溶射	09
12.8.1 ハイブリッドプラズマによるプラズマ溶射	09
12.8.2 ツインハイブリッドプラズマスプレイシステム	11

13.3.3	親水化 (2)フィルム	135
13.3.4	疎水化 フィルム	136
13.3.5	マイクロプラズマによる局所官能基付与	
	(ポリエチレン表面の任意の場所にアミノ基)	136
13.3.6	走査型大気圧マイクロラジカルジェット方式による局所親水化処理	
	(ポリカーボネートのぬれ性)	137
13.3.7	ぬれ性(ポリカーボネート)	138
13.3.8	親水性(PTFE)	139
13.4 医	薬品DDSへの表面溶解性改良······	140
13.4.1	DDSに使用する高分子の分類、選別・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	140
13.4.2	プラズマ処理による乾式DDS	142
13.4.3	大気圧グロー放電プラズマの応用	144
13.5 チュ	ューブ内 面 処 理	145
13.5.1	チューブ内面処理 (1)軟質塩ビチューブ	145
13.5.2	チューブ内面処理 (2)PETチューブの処理	146
13.5.3	チューブ内 面 処 理 (3)PETチューブの 処 理 (2)	147
13.5.4	チューブ内面処理 (4) PBIIによる処理	148
13.5.5	チューブ内面処理 (5)PTFE、PSチューブの処理	149
13.6 分	離膜の処理	150
13.6.1	分離膜の処理 (1)PP膜	150
13.6.2	分離膜の処理 (2)PAN膜 ······	151
13.6.3	分離膜の処理 (3)PSF、PAN膜	151
13.7 粉	末 • 繊維の改質	153
13.7.1	粉末のプラズマ処理例	153
13.7.2	繊維のプラズマ処理例	155
13.8 ⊐⊑	コナ処理	156
13.8.1	コロナとプラズマの比較(ポリオレフィンの処理)	156
13.8.2	超高分子量ポリエチレン繊維とエポキシ樹脂の複合化	157
13.8.3	パルスコロナ放電の利用(エレクトレットフィルタ)	158
13.8.4	コロナトーチ (1)PETの処理	158
13.8.5	コロナトーチ (2)PETの処理	160
13.8.6	ナイロンとゴムのコロナ処理	162
13.8.7	生分解性プラスチックのコロナ処理	163
13.8.8	ポリエチレンシートのコロナ処 理	164
13.9 イ ス	ナンビームによる処理具体例	165
13.9.1	PBIIによる改質 (1)PETのガスバリア性	165
13.9.2	PBIIによる改質 (2)PSF表面へのへパリン固定化	166
13.9.3	フィルムへのイオン注入	167
i.7	ポリイミド(電気特性、光学特性)	168
ii . S	ンリコーンゴム、ポリスチレン(ぬれ性)	168

iii . セグメント化ポリウレタン(細胞接着制御)	168
iv. コラーゲン(生体高分子の一種)(細胞と血小板の接着性を独立制御)	168
13.9.4 PBIIによるゴム用金型の表面改質	170
13.10 プラスチック基板に関連したプラズマ処理	171
13.10.1 常温結晶化技術	171
13.10.1.1 技術の詳細	171
13.10.1.2 具体的な応用状況	173
13.10.1.3 コンソーシアム	173
13.10.1.4 a−Si 薄膜の結晶化	173
13.10.2 有機太陽電池用ITO電極の酸素プラズマ処理効果····································	173
13.11 高温高密度プラズマによる処理	175
第14章 プラズマによる高分子材料のエッチング、微細加工	176
14.1 エッチング	176
14.1.1 Low-k膜のエッチング	
MIRAIプロジェクト、ポーラスシリカおよびプラズマ重 合 膜 のエッチング	176
14.1.2 ポーラスシリカの要素プロセス技術(MIRAIプロジェクト、2005)	178
14.1.3 NLDプラズマによるLow-k膜のエッチング	
14.1.4 層間絶縁膜のエッチング	
14.1.5 ラジカル注入を用いたECRエッチング装置によるSiLK [™] のエッチング	181
14.1.6 有機Low-k材エッチング用N₂/H₂ 2周波容量結合プラズマのモデリング ······	182
14.1.7 RLSAマイクロ波 励 起 プラズマ 源 によるLow-k膜 のエッチング	184
14.2 有機膜、フィルムのエッチング	184
14.2.1 有機膜のエッチング	
14.2.2 有機膜エッチング用大気圧プラズマ	186
14.2.3 使用ガスのポリマー堆積を抑制するシリコン酸化膜のエッチング	
14.2.4 高分子フィルムのエッチング	188
14.3 レジスト関連	
14.3.1 レジスト材開発の例	
14.3.2 レジストの問題と対策の状況	
14.3.2.1 レジストの問題と対策の状況 (1)モデリングと、実際の比較	193
14.3.2.2 レジストの問題と対策の状況 (2)LER(Line Edge Roughness)関連	196
14.3.2.3 レジストの問題と対策の状況 (3)レジスト倒れの問題と対策	198
14.4 プラズマ技術による高分子材料関連の微細加工	
14.4.1 高アスペクト比の微細加工	
14.4.1.1 高アスペクト比エッチング	200
14.4.1.2 Bosch法	
14.4.2 Bosch法以後の発展MEMS関連	
14.4.2.1 デンソーの加速度センサー(1)	
14.4.2.2 デンソーの加速度センサー(2)	204

14.4.2.3 大日本印刷のボッシュ法関連	205
14.4.2.4 サムコのボッシュ法関連プラズマ装置	206
14.4.2.5 アルバックMEMS関連プラズマ装置 ······	206
14.4.3 大気圧マイクロプラズマジェット(熱プラズマ)の微細加工	207
14.4.4 バイオチップへの応用	208
14.4.5 ポリイミドへのビアホール加工	209
14.4.6 デスミア・デスカム処理	210
14.5 プラズマ技術のナノ微細パターニング加工での利用	211
14.5.1 ナノインプリントでのエッチング	211
14.5.2 ポリマーのミクロ相分離構造を利用したナノパターン加工と記録媒体への応用…	213
14.5.3 超微細パターン凹構造の形成方法	216
14.6 高分子を一部含む材料のエッチング	217
14.6.1 ITO膜のエッチング(1)	217
14.6.2 ITO膜のエッチング(2)(参考)	218

第15章 プラズマ技術による高分子材料の洗浄、クリーニング、分解	220
15.1 洗浄、クリーニング	220
15.1.1 洗浄、クリーニング(1)有機系汚染物質想定	220
15.1.2 洗浄、クリーニング(2)洗浄専用装置の例	221
15.1.3 洗浄、クリーニング(3)金メッキエ程でのNi化合物のクリーニング	222
15.1.4 洗浄、クリーニング(4)プラズマ洗浄のダメージ評価	223
15.1.5 洗浄、クリーニング(5)廃プラスチックの塗膜クリーニング	224
15.1.6 洗浄、クリーニングに関する評価方法 (エプソンメソッドによるガス削減)	225
15.2 分解、アッシング	227
15.2.1 ナノコピー技術	227
15.2.1.1 酸化チタン/ポリアクリル酸から多孔性チタニア膜	227
15.2.1.2 二次元集積有機ナノ粒子を鋳型にしたチタニアナノカプセル	228
15.2.1.3 ケイ酸 ナトリウムとポリカチオンからシリカナノフィルム	228
15.2.1.4 チタニアをリソグラフィー(レジスト)して、ナノコピー	228
15.2.1.5 チタニアへDNAのナノコピー	
15.2.2 Low-k膜のアッシング	229
15.2.3 分解、アッシング タイヤの分解処理	230
15.2.4 分解、アッシング(市販装置)	230

第16章 プラズマ技術による高分子材料への薄膜形成

(無 機 膜 、 金 属 膜 、 カーボン 膜 など)	233
16.1 フレキシブルデバイス	234
16.1.1 フレキシブルTFT	234
16.1.1.1 プラスチック基 板 のa-Si TFT(1)	234
16.1.1.2 プラスチック基 板 のa−Si TFT(2)······	235

	225
16.1.1.3 PCVDによるポリシリコン成膜	
16.1.1.4 ZnO TFT	
16.1.1.4.1 東北大の研究	
16.1.1.4.2 高知工大の研究	
16.1.1.5 東工大の研究	
16.1.2 有機ELデバイス	
16.1.2.1 有機ELデバイスの封止技術(山形大、パイオニア、凸版印刷)	
16.1.2.2 有機ELデバイスの封止技術(豊田中研)	
16.1.2.3 有機ELデバイスの薄膜封止技術(大日本印刷)(参考)	
16.1.2.4 環境調和型有機EL ────────────────────────────────────	
16.1.2.5 有機ELディスプレイ(NHK)(参考)	
16.1.3 フィルム基板太陽電池	
16.1.3.1 フィルム基板太陽電池 (1)	
16.1.3.2 フィルム基板太陽電池 (2)CIS系電池(参考)	248
16.1.3.3 フィルム基板太陽電池 (3)有機薄膜太陽電池(参考)	248
16.1.4 フレキシブル基板 米国の動き	248
16.2 プラズマ技術による高分子材料への金属、金属酸化膜形成	249
16.2.1 高分子基板上に透明導電膜 ITO膜(1)	249
16.2.2 高分子基板上に透明導電膜 ITO膜(2)	250
16.2.3 イオンプレーティングによるITO膜	251
16.2.4 アルバック ITO膜	252
16.2.5 ECRプラズマスパッタ法によるITO膜	253
16.2.6 高分子基板上に透明導電膜 ZnO膜 ······	254
16.2.6.1 高知工大の研究	254
16.2.6.2 アークプラズマ蒸着法によるZnO透明導電膜	256
16.2.7 反応性スパッタリング法によるZnO透明導電膜	258
16.2.8 高分子材料上に金属膜量産	259
16.2.9 IVD法によるPIフィルムへ銅薄膜成膜	260
16.2.10 チューブ内面コーティング処理	262
16.2.10.1 走査ミラー磁界型同期ECRプラズマ装置による細管内面コーティング	262
16.2.10.2 同軸型マグネトロンパルスプラズマによる細管内面コーティング	263
16.3 プラズマ技術による高分子材料への無機膜形成	265
16.3.1 次世代DVDナノガラス薄膜(酸化コバルト膜)	265
16.3.2 シリカ膜	266
16.3.2.1 シリカ膜(1)	266
16.3.2.2 シリカ膜(2)	
16.3.2.3 シリカ膜などの大気圧CVD	
16.3.2.4 セラミック膜/ポリマー膜の交互ナノ多層薄膜(層数は10~30層)	
16.3.2.5 反射防止コート光学フィルム	
16.3.3 シリコン窒化膜、シリコン酸窒化膜	

1	6.3.4	シリコンカーバイド膜	270
16.	4 プラ	ラズマ技術による高分子材料へのカーボン膜の付着	271
1	6.4.1	ペットボトル用DLCコーティング(三菱重工)	273
1	6.4.2	変調RFプラズマCVDによる高分子基材へのDLC膜作製(日新電機)	274
1	6.4.3	樹脂基材へのフレキシブルDLC膜	275
1	6.4.4	パルス放電プラズマCVDによるDLC膜	276
1	6.4.5	真空アーク法による柔軟DLC膜のゴムへの成膜で	
		摩擦特性の向上(豊橋技術科学大)	277
1	6.4.6	セグメント構造DLC、ナノパルスCVD	278
	16.4.	6.1 セグメント構造DLC	278
	16.4.	6.2 ナノパルスCVDによるDLC膜	279
1	6.4.7	パルスバイアス電圧によるプラズマCVD法のDLC膜	280
1	6.4.8	DLC膜の剥離欠陥とその改善方法	281
1	6.4.9	大面積透明DLC成膜装置····································	281
1	6.4.10) ハイブリッド型 パルス・プラズマ・コーティング (HPPC)システム	282
1	6.4.1	ハイブリッド重畳方式プラズマイオン注入によるDLC膜	282
1	6.4.12	2 量産型パルスDCプラズマCVD装置······	283

第17章 プラズマ技術による高分子膜の形成

(プラズマ重合、PCVD) 2	
17.1 Low-k膜	284
17.1.1 Low-k膜 (1)NEC p-BCB膜(プラズマ重合膜)	284
17.1.2 Low-k膜 (2)半導体MIRAIプロジェクトのDVS-BCB	286
17.1.3 Low-k膜 (3)MIRAIプロジェクト2005<17.1.2以後>	288
17.1.4 Low-k膜 (4)分子内細孔法(NEC)2	289
17.1.5 Low-k膜 (5)NCSによるポーラスシリカ膜(富士通)(参考)	290
17.1.6 Low-k膜 (6)RLSAマイクロ波プラズマ装置による、C₅F₀の成膜	291
17.1.7 Low-k膜 (7)フルオロカーボン系	292
17.1.8 Low-k膜 (8)ボラジン	292
17.1.9 Low-k膜 (9)溶媒処理との組み合わせ	293
17.2 センサーへの応用 2	294
17.2.1 センサーへの応用 (1)化学センサー	294
17.2.2 センサーへの応用 (2)バイオセンシングシステム	296
17.2.2.1 QCM上にプラズマ重合膜を成膜し、膜厚測定と制御をする	296
17.2.2.2 免疫センサーの基体用抗体固定化高分子としてのプラズマ重合膜 2	296
17.2.2.3 マイクロプラズマ重合によるバイオセンサーへの応用	297
17.2.3 センサーへの応用 (3)バイオセンサー	298
17.2.4 センサーへの応用 (4)ガスセンサー	300
17.2.5 センサーへの応用 (5)ガスセンサー	301
17.3 撥水性·親水性付与	301

17.3.1 PCVDによる超撥水性・超親水性薄膜とそのマイクロパターン	301
17.3.2 撥水性、親水性材料 シリコン系のプラズマ重合(1)	303
17.3.3 撥水性、親水性材料 シリコン系のプラズマ重合(2)	304
17.4 有機無機複合膜	304
17.5 大気圧プラズマ重合による高分子材料の表面処理	305
17.5.1 大気圧プラズマ重合 (1)	306
17.5.2 大気圧プラズマ重合 (2)	306
17.5.3 大気圧プラズマ重合 (3)粘着テープの剥離剤	307
17.5.3.1 大気圧プラズマ重合 (3)粘着テープの剥離剤(1)	307
17.5.3.2 大気圧プラズマ重合 (3)粘着テープの剥離剤(2)	308
17.6 フッ素系イオン交換膜への応用	309
17.7 電池への応用	310
17.7.1 リチウムニ次電池用傾斜特性電解質への応用	311
17.7.2 メタノール型燃料電池	313
17.8 光ファイバー 増幅器への応用(プラズマ開始重合)	314
17.9 CNx:H フィルム	315

第18章	湿式法の前処理としてのプラズマ技術	317
18.1	細孔フィリング膜(プラズマ処理グラフト重合法による機能膜)	317
18.2	中空糸表面のプラズマ処理とプラズマ開始グラフト重合法による改質(1)	319
18.3	中空糸表面のプラズマ処理とプラズマ開始グラフト重合法による改質(2)	320
18.4	血液循環ポンプの抗血栓性表面処理	321
18.5	シリコン/アパタイト経皮材料のコロナグラフト重合	321
18.6	コンタクトレンズ表面のプラズマグラフト重合法	323
18.	6.1 コンタクトレンズ表 面 のプラズマグラフト重 合 法 (1)	323
18.	6.2 コンタクトレンズ表 面 のプラズマグラフト重 合 法 (2)	323
18.7	マイクロ波プラズマを用いた綿織物のグラフト重合	323
18.8	PE繊維のグラフト重合	325
18.9	スチレンのグラフト重合	326

第19章 プラズマ技術の高分子材料関連への応用その他	327
19.1 滅菌·殺菌	327
19.1.1 大気圧無声放電による殺菌	327
19.1.2 大容積マイクロ波プラズマによる低温殺菌	328
19.1.3 低温表面波空気プラズマによる殺菌	328
19.1.4 大気圧同軸マイクロ波プラズマの殺菌滅菌・殺菌	329
19.1.5 殺菌に対する、表面波マイクロプラズマのパルス変調の影響	329
19.1.6 パルス変調体積波プラズマによる殺菌	330
19.1.7 PBIIによる滅菌 ····································	331
19.2 環境改善のための処理	331

19.2.1	アスベストの処理	332
19.2.2	PCBの処理	332
19.2.3	放射能廃棄物の処理	333
19.2.4	水中難分解物質の処理	334
19.2.5	CO₂の分解	334
19.2.6	NOxの分解	335
19.2.7	CF₄の分解 ······	336
19.2.8	大気圧プラズマ触媒による有害ガス対策技術	336
19.2.9	ナノ材料の安全性	337
19.3 分材	新関連	338
19.3.1	分析関連 (1)マイクロ波ビーム重畳法を応用したプラズマ発生分光分析方法…	338
19.3.2	分析 関連 (2) 微少試料内全元素分析用パルス同期マルチガスプラズマ分析装置	339
19.3.3	分析関連 (3)マイクロ化学分析システム(µTAS:Micro Total Analysis System)	339
19.4 マイ	イクロプラズマの新規な利用	340
19.4.1	マイクロプラズマを、プラズマリアクタとして使う(1)	340
19.4.2	マイクロプラズマを、プラズマリアクタとして使う(2)	341
19.4.3	液中環境下マイクロプラズマ合成法	342
19.5 液(本プラズマ電極	342
19.5.1	液体プラズマ電極を用いたマイクロ元素分析器	342
19.5.2	液体中プラズマ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	343
19.5.3	超臨界流体プラズマの生成	344
19.6 こ≯	ιからのプラズマ技術例	345
19.6.1	高精度プラズマ制御技術(自律型ナノ製造システム)	345
19.6.2	プラズマプロセスでの壁の影響	346
第20章 終	₹ 言	348
略語表		349
参考文献		352