分冊タイプ

進化する有機薄膜 [用途編]

一電子・光・バイオへの展開 —

2004年8月発行

定価52,250円 (消費税込み)

住べリサーチの調査研究レポート

住ベリサーチ株式会社 技術調査部 〒140-0002 品川区東品川2-5-8 天王洲パークサイドビル16F TEL 03-5462-7051 FAX 03-5462-7040

目 次

	頁
第1章 はじめに	1
你。在一大楼节带 。 此后上广田八四	
第2章 有機薄膜の性質と応用分野	2
第3章 有機薄膜の応用分野	7
3.1 ディスプレイ分野への応用 ····································	
3 . 1 . 1 有機EL (OLED、PLED) 用有機薄膜 ····································	
3 . 1 . 1 A 有機ELの概要····································	
(1) 経 緯	
(2) 有機ELの原理······	
(3) 有機薄膜とOLED ····································	9
(4) OLEDの構成 ····································	9
(5) 構成材料	10
(6) 現在の到達点	12
3 . 1 . 1 B 技術的問題点とその対策	12
(1) リン光発光層の開発	13
(2) 発光の取り出し効率	17
(3) 電荷注入効率向上用薄膜	19
(4) OLED有機層の厚化······	22
3 . 1 . 1 C 関 連 特 許······	25
3.1.2 液晶表示(LCD)に用いられる有機薄膜	29
3 . 1 . 2 A 液晶配向膜····································	29
(1) カルコン系二量化タイプの改良	33
(2) アゾ染料の再配向の利用	34
(3) 垂直配向LCDにおけるパターン配向への応用	35
3 . 1 . 3 プラズマディスプレイパネル (PDP) における有機薄膜 ····································	
(1) プラズマ重合PMMA膜による保護膜	
3 . 1 . 4 電界放出ディスプレイ(Field Emission Display: FED)用有機薄膜 ·························	
(1) カーボンナノチューブを用いたエミッタの作製	
3 . 1 . 5 エレクトロクロミックディスプレイ用薄膜	
(1) ポリアニリン/電解質の自己組織化膜の適用	
(2) ドナーーアクセプタタイプ高分子	46
3 . 2 エレクトロニクス関連分野	51
3 . 2 . 1 有機薄膜トランジスタ····································	

3.2.1 A 開発状況·······	52
3.2.1 B キャリヤ移動度の向上―ペンタセン、チオフェン系 ·······	53
(1) ペンタセンの場合	53
(2) チオフェン系の場合	53
3.2.1 C チャンネル長の短縮化	55
(1) ソフトリソグラフィ法	55
(2) インクジェットプリンタによる方法	55
(3) ナノスケール埋め込み印刷法(Nano Imprinting Lithography)	56
(4) コールドウエルディング法(Cold Welding Method)	57
(5) マイクロモールド法	59
(6) 近接場フォトリソグラフィ法	59
3.2.1 D 縦型FETの提案····································	59
3.2.1 E 有機薄膜トランジスタの応用	60
(1) 集積回路(IC) ·······	60
(2) 複合化光素子	61
(3) 情報タグ(情報荷札)	63
(4) センサーへの応用	63
3.2.1 F 関連特許	63
3.2.2 分子ワイヤ	64
(1) ポリフィリン分子による 2 次元配列	64
(2) TCNQ系結晶を用いた分子ワイヤ	65
3.2.3 コンデンサーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	66
3 . 2 . 3 A 有機薄膜コンデンサ ···································	66
3.2.3 B 電解コンデンサ ···································	69
(1) アルミ電解コンデンサ	69
(2) タンタル高分子電解コンデンサ	70
3.2.4 その他のエレクトロニクス材料	70
3 . 2 . 4 A 超伝導材料·······	70
3.2.4B エレクトレット	71
(1) PTFE(パルスレーザデポジション)	71
3.2.4 C 透明電極—ポリピロール	72
3.3 オプトエレクトロニクス	73
3.3.1 有機半導体レーザ	73
3.3.1 A 電流励起有機半導体レーザ	74
3 . 3 . 1 B 光励起タイプ有機固体レーザ ····································	75
(1) レリーフ回析格子を用いた光励起有機 DFB レーザ	75
(2) 屈折率変調回析格子型光励起有機DFRレーザ	76

3 . 3 . 2 通信用有機赤外LED ····································	. 77
3.3.3 回折、位相差機器	· 79
3.3.3 A 表面レリーフ回析格子	· 79
3.3.3B 位相差マスク····································	. 80
3 . 3 . 4 偏光有機EL····································	. 80
3.3.4 A ラビング法による配列方法	· 81
3.3.4 B 液晶を用いた自己配列	· 82
3.3.4 C 特殊な基板上への配向	. 83
3.3.5 光電流増倍素子	· 85
3.3.6 光 導 波 路······	· 86
3.3.7 光集積回路(光IC)	· 87
3.3.7 A 有機薄膜を用いた光IC	. 88
3.3.7 B 光IC用素子の検討····································	. 89
3.3.8 非線形有機薄膜	• 91
3.4 センサーへの応用	• 92
3.4.1 ガスセンサー	• 92
3 . 4 . 1 A アンモニアの検出	• 92
(1) ポリ (p-キシレン) -Pb ·····	• 92
(2) アクリレート、メチルアクリレート、ビニルアクリレートなど	. 93
3 . 4 . 1 B トルエンの検出—カーボン-EVA····································	. 93
3.4.1 C エタノールの検出―ポリピロール·······	. 93
3 . 4 . 1 D アセトンの検出―パラジウム/フロロポリマー ····································	• 94
3.4.1 E トリメチルアミン、アンモニアの検出―アクリル酸膜	• 95
3 . 4 . 1 F リン酸ジメチルメチルの検出―ポリシロキサン膜	• 96
3 . 4 . 1 G BTEXの検出―ポリジメチルシロキサン ······	• 97
3 . 4 . 1 H ベンゼン他の検出—TiO ₂ +PVDF····································	• 97
3.4.1 I 酢酸、メタノールなどの検出—ポルフィリンFET····································	. 98
3.4.2 湿度センサー	100
(1) ナフィオン薄膜	100
(2) 熱分解カーボンフィルム	101
3.4.3 イオンセンサー	102
3.4.3 A Cu(II)イオンの検出····································	102
(1) ポリアクリロイルモルフィリン	102
(2) チアカリックス(4)アーレン(TCA)	103
3.4.4 臭い、香りセンサー	103
3.4.4 A 油類の検出―ポリエチレン、ポリプロピレン	104
3 4 4 B リモネンの検出― 8-シクロデキストリン	105

3.4.4 C ヘリオトロン(キダチルリソウ香) ····································	107
3.4.5 バイオセンサー	108
3 . 4 . 5 A グリコシダーゼの固定化—グルコースセンサー ····································	108
3.4.5 B パーオキシダーゼの固定化	110
3.4.5 C コレステロールオキシダーゼの固定化······	111
3.4.5 D ウレアーゼの固定化—ウレアセンサー	111
3.4.5 E 核酸の検出····································	112
(1) DNAの固定化	112
(2) ウラシル基の固定化	113
3.4.5 F 免疫センサー	113
(1) ポリピロール/ヒト血清アルブミン抗体	113
(2) ポリジアセチレン(PDA)―コレラトキシン ····································	113
(3) ビオチン化ポリピロール―コレラトキシン	114
3.4.5 G その他のバイオセンサー ····································	115
(1) 分子インプリント膜―パラセタモール(アセトアミノフェン)	115
(2) 再生可能な親和性検知表面	115
3.4.6 その他のセンサー	117
3.4.6 A 光化学センサー	117
(1) 酸センサー	117
(2) アルカリセンサー	117
3.4.6 B 味センサー	118
(1) 味センサー装置	118
(2) 導電性高分子、アゾベンゼン、Ru錯体薄膜	119
3.4.6 C 圧力センサー····································	120
(1) ロボット用センサー	120
3.5 電池材料	126
3.5.1 燃料電池への応用	126
(1) プラズマコート ナフィオン	127
(2) PVAコート ナフィオン	127
3.5.2 2次電池への応用	128
(1) (金属Li/ポリマー電解質)界面の安定化	128
(2) V_2O_5 /ポリピロールからなるカソード	130
3.5.3 太陽電池材料	130
3.5.3 A 色素増感太陽電池への応用	131
(1) MEH-PPV (增感剤)—TiO ₂ 型固体電池	132
(2) ポリ(3-ウンデシル-2-2'-ビチオフェン)(増感剤)—TiO。固体雷池	133

3.5.3	3 ショットキー型及びヘテロ接合型有機太陽電池への応用	133
(1)	受光層の膜厚の検討―銅フタロシアニン、ペリレン系	134
(2)	ITO表面の平坦化一銅フタロシアニン、ペリレン系	135
(3)	ポリペリナフタレン(PPN)系の検討	135
3.5.3	C ドナー(D)—アクセプター(A) 型太陽電池 ····································	136
(1)	$PAT6 + C_{60} + \pi - \pi \nu + j + j + j - \pi \nu$	136
(2)	MEH-PPV+フラーレン	137
(3)	MEH-OPV5—C ₆₀ ·····	137
(4)	ポリフローレーンコポリマーによるヘテロ構造	138
3.5.31	D 関連特許	139
3.5.4	光 2 次電池	140
3.6 そ	の他の応用分野	141
3.6.1	誘 電 体 膜	141
3.6.1	A 強誘電体薄膜—PVDF-TrFE コポリマー	141
3.6.1	3 低誘電率膜	143
3.6.10	C 分子キャパシタ―ポリアルキルアクリルアミド系 ·······	144
3.6.2	記録材料への応用	145
3.6.2	A 光記録材料······	145
(1)	追記型光ディスクの高速化	146
(2)	光表面レリーフによるホログラム記録	147
(3)	近接場光による表面レリーフ記録	149
(4)	分子メモリ	149
(5)	関連特許	150
3.6.2	3 電界記録膜—PVDF系·······	151
3.6.20	C 磁 気 記 録······	152
3.6.3	磁性材料への応用・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	153
3.6.3	A 有機薄膜を利用した磁性材料	153
(1)	トリブロックコポリマー $/\text{Fe}_2\text{O}_3$ 複合ナノファイバー	153
(2)	磁性ナノコンポジット粒子、中空子	155
3.6.31	3 電磁遮蔽材料	155
3.6.4	自己組織化単分子膜(SAM)を用いたパターニング	157
(1)	マイクロコンタクトプリンティング (μCP) の応用 ···································	157
(2)	トポグラフィカリディレクテッドエッチングの適用	158
(3)	ビフェニルチオール(BPT)SAMのネガレジスト	160
(4)	水系における、SAM膜を用いたパターニング	160
(5)	マイクロコンタクトプリンティング(μCP)を用いた	
	ハイパーブランチトポリマーパターン	162

(6) シロキサン テンプレート····································	163
(7) ポリエチレンイミンのパターン	164
3.6.5 分 離 膜	165
3 . 6 . 5 A 気体分離膜····································	166
3 . 6 . 5 B イオン交換膜····································	166
(1) Cu ²⁺ /Fe ³⁺ の分離 ······	166
(2) Li ⁺ の輸送······	167
(3) 軟 水 化	168
3.6.6 バリヤー膜	168
(1) ポリ尿素+Si系	169
(2) (アクリル樹脂+金属酸化物)の多層膜	170
(3) (無機・有機ハイブリッド膜/金属酸化膜)からなるバリヤー膜	171
(4) 超分岐レジンによるバリヤー	172
3.6.7 防 食 膜	172
第4章 要約と今後の展望	173
略 語 表	182