

— 多様化する製造方法 —

2004年01月発行

定価52,250円 (消費税込み)

住べリサーチの調査研究レポート

住ベリサーチ株式会社 技術調査部 〒140-0002 品川区東品川2-5-8 天王洲パークサイドビル16F TEL 03-5462-7051 FAX 03-5462-7040

目 次

	頁
第1章 はじめに	1
かっ キーナ 機 本 時 に っしょ	
第 2 章 有機薄膜について	
2.1 有機薄膜のタイプ ····································	
2.2 有機薄膜の応用分野	
2 . 2 . 1 エレクトロニクス分野····································	
2.2.3 その他の分野	
2.2.3 その他の方野	4
第3章 有機薄膜の形成法	6
3.1 ウェットプロセス	6
3 . 1 . 1 スピンコーティング法	6
(1) ポリアセチレンへの適用	7
(2) ポリチオフェンへの適用	7
(3) ポリフェニルビニレン (PPV) —— 有機EL······	7
(4) 二層高分子ELへの適用 ····································	9
(5) ポリアニリン —— マイクロ電極、FET	10
(6) アゾベンゼン —— 表面レリーフ回析格子	10
(7) 有機アンモニウム・無機層状ペロブスカイト化合物 —— 発光体など	11
3.1.2 バーコーター法、ダイコーティング法	11
3.1.2 A 適 用 例··································	11
(1) 高分子ポルフィリン錯体 —— 気体分離膜 (バーコーター法)	11
3 . 1 . 2 B 特許関係(有機EL,半導体)	
3 . 1 . 3 スプレーコーティング法 ····································	13
(1) オートネットワーク技術研究所の特許	13
(2) その他の特許······	
3 . 1 . 4 電 着 法	14
(1) カラーフィルターへの適用	
(2) 光導波路への適用	
3.1.5 インクジェット法	
3.1.5 A 適 用 例··································	
(1) 高分子ELへの適用 ····································	
3.1.5 B 特	
3 . 1 . 6 電気化学重合法	
(1) ポリピロール ―― バイオセンサー	20

(2)	ポリピロール ―― フィールドエミッションディスプレイ	20
(3)	ポリアニリン-ポリピロール組成物 —— 防食コーティング	21
3.1.7	ラングミュアーブロジェット(LB)法·······	23
(1)	2C ₁₄ -Au (dmit) ₂ —— 塩超伝導性膜	25
(2)	フッ素高分子 —— ナノスケール電気・光デバイス	26
(3)	ポリスチレン —— 原子間力顕微鏡チップ用分子ブラシ	27
(4)	ポリアニリン、ポリピロール、ルテニウム錯体 —— 味センサー	28
(5)	ウラシル基を有するポリマー —— バイオセンサー	28
(6)	無機ハイブリッド膜 —— 非線形材料等	29
(7)	ポリアニリン ——2次電池電極	30
(8)	有機超格子 —— 光機能素子	31
(9)	有機アンモニウム・無機層状ペロブスカイト化合物 —— 発光体など	31
(10)	ブロックコポリマー —— 撥水・撥油性膜	32
3.1.8	自己組織化法(Self Assembly法) ·······	32
3.1.8	A 適 用 例·······	34
(1)	ポリフェニレンビニレン等 —— 有機EL	34
(2)	ポリアニリン —— 発光デバイス等	34
(3)	ポリアニリン —— エレクトロミック素子	35
(4)	スルホン化ポリアニリン —— 光化学電池	36
(5)	ポリアニリン —— 化学分析センサー等	38
(6)	ポリピリジン —— グルコースセンサー	39
(7)	カルボキシル化ポリチオフェン —— バイオセンサー	40
(8)	ウレアーゼ —— ウレアセンサー	40
(9)	ウレアーゼ —— 酵素リアクター	41
(10)	ペプチドナノチューブ——電子デバイス、センサー	43
(11)	短頭型糖脂質 —— 有機ナノチューブへ	44
(12)	DNAコンジュゲートポリマー —— DNAチップ	44
(13)	PAH、PPV — 干渉フィルター	44
(14)	PDDA、PSSなど —— オプティカルファイバーセンサー	45
3.1.8	B 特許関係·····	46
3.1.9	新手法 —— 電位制御吸着によるセルフアセンブリ法	47
3.2 h	[*] ライプロセス······	50
3.2.1	真 空 蒸 着	50
3.2.1	A 真空蒸着の適用例·······	52
(1)	ポリー(テトラブロモーpーフェニレンジセレナイド)—— 有機EL(O LED)…	52
(2)	CuPc/PPPの共蒸着 —— 有機太陽電池····································	52
(3)	ブチルトリアジン系 —— 金属板の表面加工	53

(4) ポリフッ化ビニリデン —— コンフォーメイションの検討	54
3.2.1B 蒸着装置の開発····································	54
(1) ライン型蒸発源の開発	55
(2) ホットウォール法(HW法)の開発	56
(3) 安定化蒸発ルツボの開発	57
3.2.1 C 特許関係·····	58
3.2.2 自己組織化蒸着法	59
(1) ブチルポルフィリン —— ナノワイヤーの研究	59
3.2.3 分子線エピタキシー法	59
(1) ペリレン —— オプトエレクトロニクス	60
3.2.4 蒸着重合	60
3.2.4 A 適 用 例	61
(1) 一般的なポリイミド膜への適用	61
(2) 親水性ポリイミド膜への適用	62
(3) ポリ尿素膜への適用	62
(4) ポリアミド膜	62
(5) ポリペプチド薄膜への適用	62
(6) アクリレートへの適用	63
3.2.4 B 特許関係·····	63
3.2.5 イオンプレーティング	64
3.2.5 A 適 用 例··································	64
(1) TCNQ — ナノワイヤーへの適用 ····································	64
(2) PE, PTFE —— 絶縁膜 ······	65
(3) ポリユリア —— エレクトロオプティックフィルム	67
(4) TPA-ac — 有機EL	67
3.2.5 B 特許関係·····	67
3.2.6 スパッタリング(またはスパッタ)	68
3.2.6 A 有機薄膜用スパッタリング ····································	68
(1) 高周波スパッタリング	68
(2) マグネトロンスパッタリング	69
(3) 反応性スパッタリング(プラズマスパッタリング)	69
3.2.6 B スパッタリングの適用例 ·······	69
(1) PTFE——低誘電率膜·······	69
3.2.7 プラズマ重合	69
3.2.7 A 適 用 例	······71
(1) スチレンなどにおける低出力パルスープラズマ重合法 —— 導電性、磁性フィ	イルム71
(2) ポリチオフェン —— エレクトロニクス、オプトエレクトロニクス	73
(3) ビニールアセテイト、メチルメタクリレート —— 吸着センサー	7.4

(4)	ポリパラキシレン —— 低ε層間絶縁膜·······	75
(5)	アクリル酸ポリマー —— ガスセンサー	76
(6)	エチレンジアミン —— 酵素センサー	77
3.2.7	B 特許関係·····	77
3.2.8	パルスレーザーデポジション(Pulsed laser deposition : PLD) ····································	77
(1)	ポリビニルアセテート —— 化学センサー	77
(2)	PTFE (テフロン) —— エレクトレットフィルム他	79
3.2.9	マトリックス支援パルスレーザー蒸着	
	(Matrix-assisted pulsed laser evaporation : MAPLE)	
(1)	NPP —— NLO(非線型物質)	81
(2)	ポリピロール —— 透明電極	81
(3)	Alq ₃ —— OLED ·····	81
(4)	ウシ血清アルブミン (BSA) —— バイオセンサー他	82
(5)	ポリエチレングリコール (PEG) —— 生体適合コーティング	82
3.2.10	MAPLE直描法(Direct Write) ······	83
(1)	ホースラディッシュパーオキシダーゼ (HRP) 他への適用	84
3.2.11	摩擦転写法	84
(1)	ポリシラン	84
(2)	ポリ (p-フェニレン) (PPP)	85
3.2.12	新手法 I ——摩擦転写エピタキシャル法	86
(1)	セキシフェニレン (6P) ——偏光電界発光	86
3.2.13	新手法Ⅱ —— 有機気相蒸着(Organic Vapor Phase Deposition : OVPD) ·····	87
(1)	有機EL生産方式	87
3.2.14	新手法皿 —— 真空スプレー法	88
(1)	有機色素膜への適用	88
第4章	∳後の展望	90
参考文献	状	92
参考特言	午 ······	97